
554 -VALIDATING AND EVALUATING ADA'S (TRADE MRK) 1/2
REPRESENTATION CLAUSES AND I (U) AIR FORCE [MST OF
TECH NRIGHT-PATTERSON AFB ON SCHOOL OF ENGI

UNCLASSIFIED D 0 JOYCE DEC 87 AFIT/GCS/MA/87D-2 F/G 12/5 M

EEEEEE000001000I
EohEEEEEEmhhhE

4 ~~~ill I f'-~~

WO 12.0

1lli -2

" OIC FILE COPY

wt
Ln'

. I.0!-n

;,j

mC

kOF

_TIC
x\, MAR 0 3 1988

4 "DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

t~ pus -iac =d~ wamI S 1 1

AFIT/GCS/MA/87D-2

VALIDATING AND EVALUATING ADA'S
REPRESENTATION CLAUSES AND

IMPLEMENTATION-DEPENDENT FEATURES
ON MIL-STD-1750A ARCHITECTURE

THESIS

Daniel 0. Joyce, Captain, USAF

AFIT/GCS/MA/87D-2

Ada in a registered trademark of the U.S. Government (AJPO).

Approved for public release; distribution unlimited.

I

AFIT/GCS/MA/87D-2

VALIDATING AND EVALUATING ADA'S * REPRESENTATION CLAUSES AND

IMPLEMENTATION-DEPENDENT FEATURES ON MIL-STD-1750A ARCHITECTURE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems

Daniel 0. Joyce, B.S.

Captain, USAF

December 1987

Ada is a registered trademark of the U.S. Government (AJPO).

Approved for public release; distribution unlimited.

wil

Acknowledgments

I would like to thank the people who helped me to turn a

one page prospectus into a thesis. Mr. Phil Hanselman, 1st Lt

Marc Pitarys, and 1st Lt Robert Marmelstein of the Air Force

Wright Aeronautical Laboratory and Capt Dave King and SSgt

James Bennett of the Systems Engineering Avionics Facility

patiently explained the quirks of the Ada compilers and

MIL-STD-1750A computers I used in this thesis, which allowed me

to accomplish much more than I could have without their help.

I also thank my thesis advisor, Lt Col Richard R. Gross, for

forcing me to set my own course in the work, while keeping me

from going down too many blind alleys.

Finally, I would like to thank my wife, Gail, for her

unflagging support through this entire project. She helped me

through the darkest hours, for which I can never thank her

enough.

Daniel 0. Joyce

t';. . Codes
L a ufnd/or

nilii

II

tt

Table of Contents

Page

Acknowledgments....................

List of Figures...........................vi

List of Tables...........................vii

List of Acronyms........................viii

Abstract................................ix

I. Introduction...........................1

* Problem Statement..................2
Background.......................2
Scope...........................5
Research Approach..................5

Chapter 13 Feature Identification 5
Write and Run Prototype Tests...........6
Identify/Obtain Compilers............6
Write and Run Tests

on Host-Targeted Compilers 6
Run Tests on 1750A-Targeted Compilers .. 7
Certify Tests and Analyze Results 7

Materials and Equipment...............7
Maximum Expected Gain...............8
Sequence of Presentation..............8

II. Literature Survey...................10

Compiler Validation................10

Compiler Performance Evaluation...........12

III. System Design of Chapter 13 Feature Tests 1

Identification of Chapter 13
Features for Testing................1

Address Clauses and Interrupts. 19
Record Representation Clauses...........21
Length Clauses. 21
Interfaces to Other Languages 21

Validation Test Requirements/Design 22
Performance Evaluation Test Requirements/Design 24
Summary........................31

IV. Detailed Design of Test Procedures...........33

Prototype Test Design...............33

Detailed Prototype
Validation Text Design 33

Detailed Prototype
Performance Evaluation Test Design 35

Problems in Prototype
Test Design and Certification 40

Address Clauses and Interrupts Test Design 42
Detailed Validation Test Design 42
Detailed Performance

Evaluation Test Design 42
Validation Test Design Problems 47
Performance Evaluation

Test Design Problems 51
Summary 52

V. Analysis and Results 54

Certification of Validation Tests 55
Test Simplicity 55
Minimization of Error-Prone Constructs 55
Certification of Test Correctness

Without the Feature 56
Combinations Tested Separately 56
Eliminate Implementation-

Dependencies in Tests 57
Review by ACVC Test Developers 57

Validation Test Results 58
Enumeration Representation Clauses 59
Address Clauses and Interrupts 59

Certification of Performance Evaluation Tests 60
Current Use of Interrupts Feature 61
Alternative Use of Interrupts Feature 61

Performance Evaluation Test Results 64
Enumeration Representation Clauses 64
Address Clauses and Interrupts 65

Summary 66

VI. Conclusions and Recommendations 68
The Problem Revisited 68
Conclusions 69
Recommendations for Future Research 73

Appendix A: Chapter 13 Test Objectives and
Design Guidelines 75

Appendix B: Validation Test Software 80

Appendix C: Performance Evaluation Test Software 88

Appendix D: Validation Test Results 99

Appendix E: Performance Evaluation Test Results 103

iv

Appendix F: Detailed Descr'iption of TimePackage_1750A . 104

Appendix G: Two-Sample t Test Calculations 115

Bibliography.........................117

Vita.............................120

0v

List of Figures

Figure Page

1. Benchmark Test Loop..................26

2. Optimized Benchmark Test Loop.............27

3. PIWG Optimization Control Package...........37

4. Performance Benchmark Structure.............39

5. Example Interrupt Delay Benchmark...........46

6. Address Clause Example..................48

7. Address Clause Example with Macro...........49

vi

List of Tables

Table Page

I. GETALL TIMES and CLOCK Execution Times.........30

II. Interrupts Benchmark Configuration...........44

III. Generic Compiler Description..............54

IV. Interrupts Benchmark Results................65

vii

01 d

List of Acronyms

ACM Association for Computing Machinery

ACVC Ada Compiler Validation Capability

ACEC Ada Compiler Evaluation Capability

AFWAL Air Force Wright Aeronautical Laboratory

AIG ACVC Implementers' Guide

AJPO Ada Joint Program Office

ASD Aeronautical Systems Division

AVF Ada Validation Facility

CPU Central Processing Unit

DoD Department of Defense

HOL High Order Language

KB Kilo Byte

I/O Input/Output

LRM Language Reference Manual

PIWO Performance Issues Working Group

SIGAda Special Interest Group on Ada

viii

IIm mi

AFIT/GCS/MA/87D-2

Abstract

Developers of applications for embedded systems need full

implementations for all of the representation clauses and

implementation-dependent features in Chapter 13 of the Language

Reference Manual (LRM) if they are to be successful in

developing these applications entirely in Ada. Because

implementations of Ada's representation clauses and

implementation-dependent features vary from compiler to

* compiler, these features must be validated and evaluated before

they are used .n applications that have such high reliability

requirements. This thesis describes an approach used to

develop validation tests and performance evaluation tests, or

benchmarks, for Ada's address clauses and interrupts features

and reports the results of the validation tests and

benchmarks.

The validation tests were compiled with three validated

Ada compilers, two of which were targeted to the MIL-STD-1750A

processor. The benchmarks developed in this research measure

interrupt delay time for interrupts associated with a task

entry by an address clause. These benchmarks were compiled

*. with a validated Ada compiler targeted to the MIL-STD-1750A and

run on a Sperry 1631 MIL-STD-1750A processor.

ix

VALIDATING AND EVALUATING ADA'S REPRESENTATION CLAUSES AND
IMPLEMENTATION-DEPENDENT FEATURES ON MIL-STD-1750A ARCHITECTURE

I. Introduction

In the mid-1970s, because of rising software costs and

increasingly unreiiable software, the Department of Defense

(DoD) started the development of a new high-order computer

programming language, now known as Ada. In an effort to direct

the development and use of the language, the DoD established

* the Ada Joint Program Office (AJPO) to manage all Ada-related

- activities (Booch, 1987:22). One of the most important

activities of the AJPO is validating Ada compilers (programs

that translate Ada source code into machine instructions),

because, by DoD directive, only validated Ada compilers can be

used to develop Ada software for the DoD (AJPO, 1987). To be

validated, a compiler must pass a series of tests, known as the

Ada Compiler Validation Capability (ACVC) , that demonstrates

the compiler's adherence to ANSI/MIL-STD-1815A, Ada Programming

* Language Reference Manual (LRM) (DoD, 1983).

Even if a compiler is validated, it still may not meet the

execution requirements of embedded systems. The validation

p process does not provide an evaluation of a compiler's

.. efficiency or performance; it will only determine whether or

not a compiler complies with the Ada LRM (AJPO, 1987:1).

Problem Statement

Before using an Ada representation clause or

1
implementation-dependent feature described in Chapter 13 of

the LRM, researchers and developers of embedded applications in

Ada must determine two things:

1) Does the Chapter 13 feature's implementation
conform to the description in the Ada Programming
Language Reference Manual (LRM)?

2) If so, how efficient is the implementation
(compared to other compilers' implementations of the
same feature)?

Ada validation and performance evaluation tests did not exist

to answer these questions when this thesis project began.

Background

One of the driving forces behind the development of Ada

was a Department of Defense (DoD) need to develop a high order

- language that met the requirements of embedded systems (Booch,

1987: 14) . Booch defines an embedded system as a 'computer

system . . that forms a part of a larger system whose purpose

is not primarily computational, such as a weapons system or a

process controller' (Booch, 1987:15-16). Because of physical

limitations on embedded systems' memory (often 64 to 128

V. kilobytes) and embedded systems' real-time processing

requirements, applications for embedded systems often were (and

still are) written in JOVIAL (DoD, 1984), assembly

/! 1 For the sake of brevity I will refer to the representation

clauses and implementation-dependent features of Ada as
'Chapter 13 features" in the course of this thesis.

2

language, or some combination of the two (King, 1987) , because

of the compactness and execution time efficiency of

applications developed in these languages. However, although

JOVIAL and assembly language routines can address memory

directly and efficiently perform other low-level operations,

applications written in these languages are difficult to

maintain. Since the DoD has directed that Ada be used to

develop all new embedded applications (DoD, 1987) , the Chapter

13 features will have to perform these low-level operations as

efficiently as JOVIAL and assembly language if Ada is to

9.,eventually replace those languages.

S Ada's representation clauses (1) describe how data types

(such as integer, real, array, and record types) are to be

mapped onto the underlying machine, thus allowing for a more

efficient representation than would be possible with the

default definitions for these types: and (2) allow the direct

specification of memory addresses for objects and programs

(DoD, 1983:Ch 13, 1). For example, assume an embedded system

whose normal representation for integer data types is a 16-bit

word. If the developer knows that all of the integer values in

an application can be stored in eight bits, he can define the

representation for integers to be eight bits, effectively

doubling the number of integers he can store.

O4 The implementation-dependent features of Ada provide (1)

for specifying underlying system characteristics; (2) for
-Y

freeing unused memory that has been dynamically allocated; and

(3) for performing data conversions that Ada normally does not

3

% %%

allow because of its strong typing (Booch, 1987:332) . Without

these features, Ada can not perform the same functions as

assembly language routines; therefore, the features in Chapter

13 are vital to any embedded applications written entirely in

Ada.

Only one organization, SofTech Inc., is now developing

tests (Wilson, 1987a) for the ACVC for the existence and

correct implementation of Chapter 13. While additional tests

will be added to the ACVC in subsequent releases, version 1.9

of the ACVC, released 1 June 1987, included only four Chapter

13 tests, and these test but one feature (Wilson, 1987a).

There are at least two major efforts underway for

evaluating the performance of Ada compilers. The Boeing

Military Airplane Company is currently under contract to the

Ada Evaluation and Validation Team of the AJPO to develop the

*. Ada Compiler Evaluation Capability (ACEC) , a test suite that

will include performance tests for (among others) Chapter 13

features of the language (BMAC,1987). The second effort is

that of the Performance Issues Working Group (PIWO) of the

Association for Computing Machinery (ACM) Special Interest

Group on Ada (SIGAda). Among other activities, the PIWG

collects compiler benchmarks from its members and places them

in the public domain; performance evaluation benchmarks for

Chapter 13 features are among these (Squire, 1987).

4

Scope

The goals of this thesis project, then, were (1) to expand

the existing compiler validation and evaluation methods or

develop new methods, as necessary, for validating and

evaluating Chapter 13 features of Ada and (2) to certify these

methods by writing needed validation and evaluation tests and

applying them to compilers targeted to embedded computers. All

compilers run on one computer (the 'host computer") and produce

machine instructions for another computer (the 'target

computer') that may or may not be the same as the host. In

this thesis, I studied Ada compilers targeted to MIL-STD-1750A
I

computers, the standard airborne (embedded) computers for the

U.S. Air Force (DoD, 1982:1).

I did not develop tests for all of the features in Chapter

13; instead, I concentrated on the features most important to

the development of embedded systems applications. My ordering

of importance was based on the assumption that embedded systems

developers would be using a mix of Ada, JOVIAL, and assembly

language in the near future because of the current lack of Ada

compilers with full Chapter 13 implementations targeted to the

MIL-STD-1750A computer.

Research Approach

4Chapter 13 Feature Identification. I identified the most

important Chapter 13 features for embedded systems by a review

of current literature and by discussions with embedded systems

developers in the Aeronautical Systems Division Systems

5

60~

Engineering Avionics Facility (ASD/ENASF), embedded systems

developers in the Air Force Wright Aeronautical Laboratories

System Evaluation Branch (AFWAL/AAAF) and Information

Processing Technology Branch (AFWAL/AAAT) , and other embedded

systems developers in the Air Force and industry.

Write and Run Prototype Tests. I wrote tests for the

validity and efficiency of a Chapter 13 feature that was

implemented by at least two Ada compilers targeted to the host

computer. The process of writing and running these tests

helped to refine the requirements for the remaining tests, to

identify potential problem areas, and to learn the size and

difficulty of the thesis problem.

Identify/Obtain Compilers. Based on the Chapter 13

features identified for study, I chose the candidate compilers

that were used in my thesis project. I included compilers that

were hosted on and targeted to the same computer, as well as

compilers that were targeted to a MIL-STD-1750A computer to

provide a broad range of compiler/host combinations. Compilers

targeted to the host machine typically included better tools

(such as debuggers), which were helpful in developing the test

software.

Write and Run Tests on Host-Targeted Compilers. Using the

methods developed in writing the prototype tests, I wrote the

tests for the Chapter 13 features identified earlier and then

ran the tests on the compilers that were targeted to the host

computer to take advantage of diagnostic tools discussedi6
0

above. Based on this preliminary testing and analysis, I had

to re-write and re-run some of these tests.

Run Tests on 1750A-Targeted Compilers. After establishing

the validity of the tests on the host-targeted compilers, I

applied them to the Ada compilers that are targeted to the

MIL-STD-1750A computers.

Certify Tests and Analyze Results. Finally, I certified

that the tests developed in this thesis answered the questions

stated in the thesis problem and analyzed the results of the

tests. The results of the validation tests were discrete; a

compiler either passed or failed the applicable tests. The

0results of the performance evaluation test were continuous

execution times, so I was able to support the hypothesis that

the mean test execution times for various benchmarks differed,

and to explain the causes for those differences. Using these

results, I wrote conclusions and recommendations.

Materials and Equipment

The compilers needed for this thesis, including compilers

that are targeted to the MIL-STD-1750A computer, were generally

available at AFIT and through organizations at Wright-Patterson

AFB. AFWAL/AAAT and the thesis sponsor, ASD/ENASF, provided

access to MIL-STD-1750A computers, Ada compilers targeted to

those computers, and the assistance of personnel knowledgeable

in the operation of this hardware and software. Finally, I was

given access to the ARPANET to obtain public domain test

software and information on the state of current Ada research.

7

1111

Maximum Expected Gain

I expected this thesis to break new ground in the area of

testing Ada's Chapter 13 features. Many are hesitant to use

Ada because it is an immature language, and few want to take a

risk on unproven features in the language (Myers, 1987:71).

This thesis should remove some of the uncertainty surrounding

Chapter 13 features by providing sound tests for the validity

and performance of those features. This work is immediately

useful to developers of embedded applications in Ada, as well

as to those who are developing Ada compilers that will

implement these features, because it provides a method for

0testing the validity and efficiency of these features before

they must be used. Finally, the AVF expressed an interest in

the results of this thesis in developing new tests for the ACVC

test suite (Chitwood, 1987), and some of the validation tests

* written in this thesis were incorporated in version 1.10 of the

Ada Compiler Validation Capability test suite (Brashear,

1987b).

Sequence of Presentation

The theory and method of compiler validation and

performance evaluation are summarized in Chapter 2. This

chapter also identifies some of the deficiencies of previous

methods in these two fields.

The design of the validation and evaluation tests

developed in this thesis is presented in Chapter 3. This

* chapter describes the test requirements, Justifies the

requirements, and gives a general approach to test design that

fulfills these requirements.

Chapter 4 describes the detailed design of the tests.

Chapter 5 details how the tests were certified and reports

the results of the Chapter 13 feature tests.

The conclusions of this project and recommendations for

future research are presented in Chapter 6.

4.

.4r

II. Literature Survey

The development of tests for correct and efficient

implementations of features of the Ada programming language is

guided by two of the most important disciplines of compiler

ana:vsis: validation and performance evaluation. This chapter

V will review current theory and method in these two areas and

relate them to the problem of testing representation clauses

and implementation-dependent features of Ada.

Compiler Validation

One of the major design requirements for Ada in the early

stages of its development was that the software developed with

Ada and the programmers trained with Ada be portable

(Ploedereder, 1986: Ch 7, 1). All too often, pre-Ada software

had to be extensively rewritten when moved to another computer

system, and programmers had to be trained in new programming

languages whenever they moved. Although standards exist for

languages such as Pascal, JOVIAL, and COBOL, past experience

had shown that software was often developed using a

non-standard or extended-standard compiler, making it very

costly to move an application to a new computer because of the

differences between the old and new compilers. This is one of

the primary reasons that no subset, extended, or non-standard

Ada compilers are allowed (Ploedereder, 1986: Ch 7, 1).

The Ada Compiler Validation Capability (ACVC)

Implementers' Guide "describes implementation implications of

the LRM and conditions to be checked by validation tests*

10

(Goodenough, 1986:Ch 1, 1). This guide provides semantic

ramifications, legality rules, and AJPO-approved

interpretations of Ada constructs as well as test objectives

and design guidelines for all validation tests. Although test

objectives and design guidelines have been written, only a

subset of these have been turned into working validation test

programs (Wilson, 1987a).

The 3100 tests in version 1.9 of the ACVC fall into the

following classes: (1) Class A tests ensure the minimum

'P" allowable set of the language is implemented; (2) Class B tests

determine whether a compiler can detect illegal uses of the

language; (3) Class C tests are run-time tests that should

compile and execute successfully: (4) Class D tests determine

the capacity of the implementation of the language constructs,

such as determining how many levels of loop nesting an

implementation will support; (5) Class E tests determine

whether implementation-dependent attributes of language

features have been provided for; and (6) Class L tests

determine the compiler's ability to detect link-time errors

(Wilson, 1987b) . A compiler, however, does not necessarily have

to implement all of the features in Chapter 13 to pass these

tests. For example, the Ada LRM states: 'An implementation

may limit its acceptance of representation clauses to those

that can be handled simply by the underlying hardware* (DoD,

1983: Ch 13, 2). Because certain Chapter 13 features are

considered optional and because initial ACVC emphasis was

placed on testing the mandatory features of the language, early

5,. 1

N

versions of the ACVC did not include tests for features in

Chapter 13 of the LRM, even though some such features, such as

package SYSTEM (which defines characteristics of the target

computer) must be provided by an implementation (DoD, 1983:Ch

13, 9).

Also, because Ada compilers are currently validated with a

test suite that tests only a subset of the language (Wilson,

1987a) , a validated compiler could have an illegal

implementation of some untested feature. For example, a

compiler that has an incorrect implementation for address

clauses (one of the Chapter 13 features) could be validated
0

with the current (version 1.9) or previous versions of the ACVC

test suite because these versions did not contain tests for

address clauses.

Finally, because the ACVC test suite makes no inferences

about the relative efficiency of one compiler versus another

(Wilson, 1987a), compiler validation cannot be used to

determine the suitability of a compiler for a particular

application (AJPO, 1987:1). The Ada compiler validation

process has discrete results -- either a compiler passes all

papplicable tests and is validated as conforming to the

,, standard, or it fails at least one applicable test and is not

validated.

Compiler Performance Evaluation

Compiler performance evaluation, or benchmarking, is an

*. outgrowth of the computer benchmarking field. Computer

* 12

4.1 . R I

S

benchmarking techniques developed in the early 1970s, as

potential purchasers of large computer systems searched for a

tool that could provide an objective measure of a computer's

processing power (Benwell, 1975: vii-viii) . Performance

evaluation programs, or benchmarks, were developed to measure a

computer's processing power by measuring the computer's

execution time for a representative set of computer

instructions. The basic approach in benchmarking computers is

to hold all other factors (such as computer programming

language use, number of iterations, etc.) constant in a

benchmark execution, varying only the the computer being

benchmarked; thus any difference in test results may be

attributed to differences in the computers' execution speeds.

This same method may be applied to benchmarking compilers.

* There are three approaches that have been used to evaluate

the efficiency of Ada and other high order languages (HOLs)

using the metric of execution speed:

writing (1) a set of small well-established numerical
benchmarks, (2) a sample of representative programs
from the application domain, and (3) a synthetic
benchmark in Ada and other high order languages,
viz., FORTRAN and Pascal, and comparing the resulting
compilation and execution times (Bassman and others,
1985:151).

Numerical benchmarks were originally developed to benchmark

scientific computers whose primary functions were floating

point mathematical operations. Because such benchmarks do not
L'a

typically use the more modern constructs, such as tasking and

access types, of a language such as Ada, they cannot accurately

evaluate these features (Weicker, 1984:1013). Application

ED j13

domain benchmarks are application programs that have been

modified to include code for reporting performance of the

program (Craine, 1986: 13). Because compilers targeted to

MIL-STD-1750A computers have so far implemented few of the

Chapter 13 features, applications using these features are

generally unavailable. A synthetic benchmark includes a

balance of instructions that is typical of the general use of a

computer language, based on a statistical analysis of a large

number of applications written in that language (Bassman and

others, 1985:151).

While these three approaches provide comparative

information for general-purpose (non-embedded) computers, they

do not give quantitative results that can be used by the

compiler implementers and users concerned with the effects of

specific language features, because the results are distorted

by the effects of other language constructs used in the

benchmarks (Bassman and others, 1985:151).

To benchmark the performance of an Ada compiler and that

of another HOL such as Pascal (or another vendor's version of

Ada) , another approach that may be adapted to embedded computer

systems includes:

(1) Programming test cases for fundamental language
features in Ada, the HOL, and assembly language; (2)
Writing test cases for code improvement in Ada and
the HOL; and (3) Programming representative
applications in Ada, the HOL, and assembly language
(Bassman and others, 1985:153).

This approach is suitable for benchmarking compilers targeted

to embedded processors because it provides 'detailed knowledge

14

ii',,

01III

of the performance of individual features* (Clapp and others,

1986:767; Bassman and others, 1985:155). In this approach, the

benchmarks are designed to measure the execution time of

specific language features by isolating the feature in a test

loop of the benchmark and determining the difference in

execution time between the test loop and a control loop in

which the feature is not used (Clapp and others, 1986:767).

This approach will be referred to as the "dual-loop approach'

in the remainder of this thesis.

Because of the limited memory available to and real-time

processing requirements for embedded applications, two of the

primary requirements for benchmarks for Chapter 13 features in

embedded applications are that the benchmark measure the

feature's memory use and execution speed (Phillips and

Stevenson, 1984:4.100). With respect to memory requirements,

the MIL-STD-1750A computer with the extended memory option now

allows an application to address up to one megaword of memory,

although only 64K words each of data and instructions may be

accessed without changing page registers (Bunce, 1987). As

long as program units (such as tasks) can be designed so that

they stay within a 64K boundary accessible within the logical

address space, the application does not suffer from excessive

page swapping (Bunce, 1987) . New embedded applications being

developed for MIL-STD-1750A will most likely use the extended

memory option, lessening the size restrictions on those

applications (Lyons, 1987). One researcher further found that

the arguments against using Ada for applications targeted to

15

the MIL-STD-1750A computer because of insufficient memory were

based on worst-case scenarios instead of the class of

applications more likely to be found on embedded systems

-"- (Roark, 1987b). In fact, embedded real-time applications

researchers and developers interviewed in this research were

able to work around memory limitations or found that their

applications were not limited by the larger memory available

with the extended memory MIL-STD-1750A (Clements, 1987; Roark

1987b) Nevertheless, embedded systems benchmarks should still

address memory usage as a concern.

With respect to time requirements, although research is

currently being conducted to develop faster MIL-STD-1750A

-" ,computers using Very High Speed Integrated Circuit (VHSIC)

technology, this technology may not be available in time to

solve the more pressing timing restrictions currently placed on

- embedded applications (Pitarys, 1987). Furthermore, history

indicates that time efficiency will remain a concern even if

much faster processors are found.

Currently there are two major sets of performance

evaluation software available in the public domain: the SIGAda

PIWG benchmarks and the Prototype Ada Compiler Evaluation

Capability (ACEC). The SIGAda benchmarks are a collection of

-z benchmarks that use the dual-loop approach to measure the

0, execution time associated with such constructs as task creation

and elaboration, exception handling, package TEXTI0, loops,

procedure calls, various task design styles, and packed boolean

arrays (PIWG, 1987). Except for the benchmarks that measure

ANY 116

the effects of packing boolean arrays, none of these benchmarks

measures any Chapter 13 features.

The prototype ACEC benchmarks are a collection of

benchmarks from the public domain, organized for the Evaluation

and Validation team of the AJPO by the Institute for Defense

Analyses. These include numerical and synthetic benchmarks

that measure the execution time associated with tasking,

procedure calls, loops, case statements, recursive calls, and

*, global variable access, among others. The prototype ACEC does

include benchmarks for the use of Chapter 13 features,

including measurements for unchecked storage deallocation and
S

mathematical operations on objects declared with a length

clause (Witt, 1985:90-93).

Other sets of benchmarks available are those collected on

the Ada Software Repository (Conn, 1987:130) which include

numerical and synthetic benchmarks from the 1985 Los Angeles

ACM AdaTEC conference; other numerical benchmarks such as

Whetstone, Dhrystone, and the Sieve of Erastothenes; synthetic

'p benchmarks to measure tasking overhead; and finally, a copy of

the ACM SIGAda PIWG benchmarks. These collections do not

contain any new benchmarks for Chapter 13 features beyond those

V described previously in this chapter.

'1p

•d 111

.J.

III. System Design of Chapter 13 Feature Tests

This chapter identifies the Chapter 13 features chosen for

evaluation and describes why they are more important to

embedded applications than other features. The requirements

and justification are also presented for the design of a system

of tests and procedures to validate and evaluate Chapter 13

features.

Identification of Chapter 13 Features for Testing

Recall from Chapter 1 that the purpose of this research

was to expand the current validation and performance evaluation

techniques to develop tests to validate and evalu&te the

features of Chapter 13 most important to embedded

applications. This section describes the Chapter 13 features

that were chosen and explains why they were chosen.

Because there are currently very few Ada compilers with

full Chapter 13 implementations available, most of the research

to identify the Chapter 13 features important to embedded

applications developers was conducted through interviews with

those developers. Some embedded applications developers

interviewed stated flatly that they needed most or all of the

Chapter 13 features for their applications (Roark, 1987; Shaw,

1987; Lyons, 1987). Others were able to prioritize the need

for implementation of certain features based on their knowledge

that they currently used (or would soon use) the feature in an

application, or conversely, that they would not use a feature

(because they had no need for it, the feature was too risky to

18

use, or the capability could be provided in other ways) (King,

1987; Bennett, 1987; Seward, 1987). The lack of production-

quality compilers targeted to MIL-STD-1750A computers still

forces developers of these applications to use a mixture of

Ada, assembly language, and JOVIAL (Bennett, 1987).

In these discussions with embedded applications developers

and compiler designers for those applications, then, the

features that were identified as most important were Address

Clauses and Interrupts, Record Representation Clauses, Length

Clauses, and Interface to Other Languages.

Address Clause and Interrupts. Ada's address clauses

allow a developer to specify the memory location (or address)

at which a variable is to be stored or at which a subprogram or

package is to begin. They may also be used to link an

interrupt to an Ada task that will handle the interrupt (DoD,

1983:Ch 13, 5). These features are vital to embedded

applications, especially those that seek to minimize the number

of assembly language routines included to perform low-level

operations. It is the nature of embedded applications that

certain operations, such as reading data from pre-determined

Input/Output (I/O) ports, must be tailored to the configuration

of the hardware. Because decisions regarding the physical

location of registers and I/O ports on the underlying hardware

are made long before software is developed, software must adapt

to the hardware. For example, the device that determines the

airspeed of an aircraft may be physically connected to an I/O

port at memory address 2000 of an embedded computer, so data

19

from the device must be read from that location. By specifying

that the variable that will contain the information be loaded

at that address, the data from the device can be read from the

variable. If this feature were not provided, an application

would have to make a call to an assembly language or JOVIAL

routine to retrieve the data from address 2000.

Another feature that is closely related to address clauses

is Ada's interrupt handling feature. An interrupt is an event

during the execution of a program that indicates an error in

the hardware or software has occurred or that signals that some

device attached to the computer needs service. The interrupt

notifies the Central Processing Unit (CPU) to suspend its

current operation and take action on, or handle, the event that

*! caused the interrupt. For example, an I/O interrupt may signal

the CPU that data is ready to be read from an I/O port. The

CPU, in turn, handles the interrupt by moving the data from the

I/O port to main memory. Many embedded applications, such as

avionics, are typically interrupt driven (DoD, 1982), i.e.,

interrupts (rather than polling schemes) are used to indicate

when I/O or hardware devices need service (Bennett, 1987).

Since Ada was designed for embedded systems (Booch, 1987),

providing a capability to handle interrupts is crucial. Ada's

interrupts feature allows applications to handle asynchronous

interrupts by associating a task entry with a memory location

that contains the interrupt vector or the number of the

interrupt itself. When the interrupt occurs, the associated

20

task entry is called and the interrupt is handled by the body

of the task.

Record Representation Clauses. Record representation

clauses allow the embedded applications developer to declare

and use variables that represent low-level values normally not

accessible with other high-order languages. A common example

of this would be to use the record representation clause to

declare a record representation for a computer's program status

word (PSW) (DoD, 1983:Ch 13, 6; DoD, 1982, 11), in which

information about the state of the CPU and other devices is

stored in specific bit positions. The capability to access the

PSW can be vital to an application because its values often

determine the sequence of future operations in the

application. Without record representation clauses, an Ada

application would have to incorporate a number of assembly

language routines to retrieve and decode information stored in

registers such as the PSW (Seward, 1987).

Length Clauses. Length clauses, like the features

described earlier, allow the developer to tailor his

'application to the underlying hardware. They take advantage of

physical characteristics (such as word length) to define for

data types more efficient representations than the defaults

(DoD, 1983:Ch 13, 3). Because of the execution time and

storage space requirements placed on many embedded

applications, length clauses are thus necessary (Seward, 1987).

Interfaces to Other Languages. Because embedded

applications in Ada still currently need to call assembly and

21

JOVIAL routines to perform certain low-level operations

(Bennett, 1987), without this feature, Ada could not now be

used for embedded applications.

Other features in Chapter 13 were not studied because they

could be worked around more easily or were too risky to use in

embedded applications (Bennett, 1987; Roark, 1987; Seward,

1987). Change of representation, a feature that allows the

developer to specify an alternate representation for a data

type, was not studied because its function could be provided

(albeit less efficiently) by explicit type conversions and

declarations of additional data types. Machine code insertions

allow the developer to place assembly language instructions

directly in a procedure, but the same result may be obtained by

calling an assembly language routine with the interface to

other languages feature. Unchecked storage deallocation, used

-* to free for further use memory that had been previously

dynamically allocated, was not studied because the developers

either do not have the high confidence in the correct operation

of the feature, or cannot make the required determination of

the maximum dynamic memory requirements, or both. (Bennett,

1987; Seward, 1987). Finally, unchecked type conversion was

not studied because it would not be used as often as the other

features identified for study (Bennett, 1987).

Validation Test Requirements/Design

The primary design requirement for the validation tests

was that they determine whether a compiler complies with the

22

Ada LRM (AJPO, 1987). This requirement is expanded in the ACVC

Implementers' Guide (AIG) (described in Chapter 2) in specific

design guidelines for tests for the entire Ada language

(Goodenough, 1986) In particular, Ada validation tests must

clearly state their objectives, identify the language feature

being tested, and generate specific information on whether the

compiler passed or failed the test. For such generation, my

validation tests used the standard ACVC test reporting package

REPORT that wrote the results of the tests using Ada's package

2TEXTIO2
. The reasons for this were twofold: by designing for

re-usability of existing software, I was able to spend more

time developing and testing my design; and this approach made

the tests I developed reusable by organizations such as the Ada

Validation Facility (AVF). The validation tests were likewise

categorized according to the six ACVC test classes described in

Chapter 2.

While validation tests provide only a yes or no answer for

implementations of a Chapter 13 feature, these tests are a

prerequisite for evaluating the performance of the feature. An

efficiency test comparing two compilers may have no meaning if

one of the compilers being tested has an invalid implementation

of the feature in question.

A compiler either implemented a feature correctly and
04

passed all validation tests, or it failed one or more of the

2 TEXTIO can be used for this purpose, because all Ada

compilers must implement TEXTIO to pass a compiler validation
(Wilson, 1987a).

S23

,J

tests and was ruled non-valid. Therefore, statistical methods

could not be applied to the validation tests to determine their

validity. The validity of the tests was determined instead

through reviews of the tests by ACVC test developers in the Ada

Validation Facility and at SofTech, Inc. These two

organizations are responsible for the development and

maintenance of all tests in the ACVC test suite (Wilson,

1987b). These reviews, identical to those conducted to certify

ACVC tests, ensured that test design objectives were fulfilled

and that the tests contained no obvious errors.

4 Performance Evaluation Test Requirements/Design

The two metrics described in chapter 2 that were used to

determine the efficiency of Chapter 13 features in embedded

applications were memory use and execution speed. Additional

requirements for benchmarks for these language features are:

1. The features to be measured must be isolated and
compiler optimizations that would invalidate the
measurement must be avoided.
2. Sufficient accuracy in the measurement must be
bobtained.

3. Operating system distortions must be avoided.
4. The results obtained must be repeatable (Clapp
and others, 1986:760-761).

As the research progressed, it became apparent that the

time metric was more important in determining the efficiency of

Chapter 13 features, because the MIL-STD-1750A extended memory

option allows an application to address up to one megaword of

memory, reducing the space constraints on many embedded

applications. Therefore, this thesis concentrated on

benchmarks that measured the execution time associated with the

24

W-

use of a Chapter 13 feature as a metric for the efficiency of

that feature's implementation.

The design of a test of the performance of a Chapter 13

feature was based on the 'dual-loop' method of Clapp and others

described in Chapter 2. This approach concentrates on

measuring the effect of using one feature and meticulously

'a, negates all other factors that may affect the timing results.

This is the best method for determining whether a compiler's

implementation of a feature is suitable for an embedded real-

time application, because it alone (as stated in chapter 2)

provides specific comparative information about the effects of

the use of that one feature. Furthermore, it is the same

method used in many of the benchmarks in the ACM SIGAda PIWG

test suite (PIWG,1986). By reusing PIWG software for timing

measurements, data collection, and test reporting, I had more

time to develop and validate the tests for performance

evaluation of Chapter 13 features. Numerical, application

domain, and synthetic benchmarks were not used because they

could not provide comparative measures of compiler efficiency

for specific language features.
0

As described in Chapter 2, benchmarks for Chapter 13

features had to meet additional requirements. The isolation of

the test feature was accomplished by writing two parallel sets

of executable operations, one set that used the feature and one

that did not. Each of these sets was placed in an identical

loop so that the only difference between the two loops was the

use of the feature being studied.

25
SJ

m ',

Avoidin8 compiler optimization of the tests is critical

because optimization can radically alter the nature of the

test. Consider the test loop in figure 1.

Test StartTime := CurrentCPUTime;

* For I = 1 to 100 loop
Test Variable := 10;

end loop;

TestStopTime := CurrentCPU_Time;
TestTotalTime := TestStopTime

- TestStartTime;

Figure 1. Benchmark Test Loop

The objective of this test is to measure the time it takes to

*, perform an assignment statement 100 times in a loop. The

Test Start Time and Test StopTime variables take time readings

before and after the loop from the function CurrentCPU_Time,

and the total time for the test is determined by their

difference. Because the value of Test-Variable will be 10 no

matter how many times the loop is executed, an optimizing

compiler may generate executable statements that will perform

the operations shown in figure 2. In this optimized version,

the assignment has been moved out of the loop by the compiler

to make the program more efficient. Some compilers may even

remove the loop entirely, replacing it with the TestVariable

assignment statement. The segment of code in figure 2 has the

same logical result (i.e. TestVariable is set to 2) as the

segment of code in figure 1, but the results of the execution

time measurement may be very different.

26

I

TestStartTime := CurrentCPUTime;

For I = I to 100 loop
null; -- Do nothing in the loop

end loop;

TestVariable := 10;

TestStopTime CurrentCPUTime'
TestTotal_Time := TestStopTime

- TestStartTime;

Figure 2. Optimized Benchmark Test Loop

Some compilers allow the user to control optimization by

'setting a parameter for the compilation, instructing the

compiler to perform no optimization on the instructions.

Another method is to keep the values of objects in the loop

P hidden from the compiler by placing them in a procedure that is

compiled after the test program. This method was used in this

thesis because it ensured no optimization, whether an

optimization control switch was set or not.

The accuracy of the time measurement is a function of the

-. resolution of the clock available on the computer on which the

benchmark is run. A benchmark that is generic enough to run on

a number of compilers must use the Ada CLOCK function in

'p package CALENDAR, because it is the only function that all Ada

compilers must implement that returns the current CPU time of

-7. the underlying hardware (DoD, 1983:Ch 9, 11). Such use of the

Ada CLOCK function presents a number of timing anomalies that

mtst be accounted for when designing a benchmark: insufficient

27

p r4

1 A - .

clock precision, variations in the clock, and clock overhead

(Altman, 1987:11-16).

The CLOCK function in Ada does not provide a continuous

24 representation of time: rather, it expresses the time in

increments t, with t defined by the value SYSTEM.TICK (DoD,

1983:Ch 13, 11). The execution time of a benchmark therefore

will always return a time of some integral multiple of this

increment, n * t. Because the actual time a benchmark takes to

execute may not be an exact multiple of t, the actual time will

lie between n * t and (n + 1) * t. The smaller n is, the

larger the variability of the benchmark's results. By

increasing the number of the loop executions, this variability

can be reduced and a more accurate time for the effect of the

feature can be produced by averaging the time for one execution

(loop) of the benchmark (Clapp and others, 1986:762); this was

the method used in this thesis.

In the course of this research, I found that the CLOCK

function did not return time values with the precision

necessary to measure the events associated with the features I

V was studying. I then wrote package TIMEPACKAGE_1750A, which

includes procedure GETALLTIMES, designed to retrieve the time

from the hardware clock registers of the MIL-STD-1750A4! processor. This package and its development are described in

detail in Appendix F.

Although GET_ALLTIMES returns CPU times with greater

precision than those from the CLOCK function in package

CALENDAR, it too is affected by the discrete-function timing

28

anomalies described above. Furthermore, a clock may drift, or

gradually run slow or fast compared to an ideal clock; or a

clock may jitter, speeding up or slowing down briefly, but

% remaining accurate over longer time spans (Altman, 1987:12-

15) . Without performing tests on the computer hardware with

another clock, one cannot detect drift and jitter but should be

-'. aware that they may occur. Jitter in a clock will tend to be

offset as the number of loop iterations increases and longer

time spans are used to record the results of the benchmark.

One approach to negate the effects of drift is to repeat the

benchmarks a number of times, so that the drift of a clock

6would apply equally to the test and control loops of a

benchmark, still providing a comparative measure of compiler

performance. The alternative to this is to measure the drift

of the clock with tests on the computer hardware (e.g.,

connecting an external clock to the computer and measuring the

differences in the two clocks), or to use an external clock to

record benchmark timing data (Altman, 1987:16). Detecting the

drift of a clock, if it existed, was beyond the scope of this

thesis. The benchmark executions were repeated, however, so

that if drift were present, its effect would be negated as

described above.

Overhead in the GETALL TIMES calls was negated by making

(a, identical calls for a test and control loop in the benchmark,

so that when the elapsed time was calculated by subtracting the

clock start time from the clock stop time, the overhead

"p. 29

J1,L

introduced by the GETALLTIMES call was eliminated (Altman,

1987:16).

As a mechanism for verifying that the GETALLTIMES

procedure was providing an accurate measure of the time

required for the test execution, GETALLTIMES and the Ada

CLOCK function were used to time identical loops that performed

an assignment, addition, and conditional (it-then-else)

statement. Techniques for control of optimization, described

earlier, were used in the design of the loops, thus the

*" execution times should have been identical. Two separate

? ~prggrams were written, identical except for the routine used to0 1

retrieve the current CPU time. The programs executed the loop

30,000 times and were both executed 50 times on a Sperry 16313

-" MiL-STD-1750A. The elapsed loop time was found by subtracting

the overhead of the CPU time retrieval calls from the elapsed

"o0p time. The results are reported in table I below.

Table 1
GETALLTIMES and CLOCK Execution Times

Standard
Time Retrieval Mean Deviation

Program (seconds) (seconds)
0

GET ALLTIMES 0.55158 0.00028
Ada CLOCK 0.52510 0.00317

Use of this processor does not necessarily indicate the
compilers studied in this thesis. The Sperry 1631 processor
executed test programs compiled with at least three validated

. Ada compilers targeted to the MIL-STD-1750A during my research.

30

0$ 11 e r.

/ The variability in the results may be attributed to the reduced

precision available with the CLOCK function. Package CALENDAR

reports all times using a fixed point data type name DURATION,

which stores time data accurate to 200 microseconds. The

A GETALLTIMES procedure can retrieve and store time data

accurate to 10 microseconds. Given that GETALLTIMES reports

current CPU time more accurately and precisely than the

function available in package CALENDAR, GETALLTIMES was used

in the remainder of the research for CPU time retrieval.

The third additional requirement of the dual-loop method,

eliminating operating system distortion, is not a major concern

with the MIL-STD-1750A computer. This requirement was included

principally for time-sharing or multiprocessing systems in

which other processors or system functions may interfere wit"

the operation of the benchmark (Clapp and others, 1986:763).

With the MIL-STD-1750A, such distortion was eliminated by

running the benchmark and nothing else on the computer.

Finally, repeatability of test results was provided in the

design by making no assumptions about pre-conditions for the

benchmarks. The benchmarks were designed to run alone on a

MIL-STD-1750A, therefore all benchmark executions will report

identical results.

Summary

This chapter identified the most important features in

Chapter 13 for study and described why they are important. The

A. requirements for validation and performance evaluation tests

31

St

0.1 ; -

for these features were presented, followed by a description of

how the test design was based on the requirements. In the next

chapter, the system design presented here is expanded to give

more details of the design process.

a3

I

I

IV. Detailed Design of Chapter 13 Feature Tests

This chapter provides more details of the design of the

validation and performance evaluation tests for: (1) the

prototype Chapter 13 feature, enumeration representation

clauses, and (2) the other Chapter 13 features identified as

important to embedded applications earlier in this thesis,

address clauses and interrupts.

Prototype Test Design

The enumeration representation clause was chosen as the

feature for which to write prototype validation and performance

evaluation tests, or benchmarks, because of its current and

potential use in embedded applications (Hanselman, 1987). The

purpose for writing prototype tests, stated in the

introduction, was to develop a greater understanding of the

requirements for and the problems associated with design and

implementation of the tests. The enumeration representation

clause was ideal for a prototype because the set of other

language features it affected was rather small, which made

tests for the validity and performance of the feature much

easier to develop. Tackling a larger or more extensive feature

first would have consumed more research time for the amount

learned delaying further implementation of tests on other
I

Chapter 13 features.

Detailed Prototype Validation Test Design. The detailed

design guidelines for the validation tests for enumeration
I

representation clauses came from the ACVC Implementers' Guide

33

(AIG), as discussed in Chapter 3. The intent in the design of

the prototype validation tests was to develop and execute a

representative sample of tests that would be required for a

complete validation of the feature. The purpose, again, was to

learn as much about the process of developing validation tests

and the problems associated with this development as quickly as

possible. For that reason, four representative tests were

written for the 13 test objectives outlined in the AIG for

enumeration representation clauses (Goodenough, 1986:Ch 13, 39-

40). These tests were selected because they tested the feature

as it would most commonly be used. Tests named BD3001A,

BD3002A, BD3004A, BD3012A were developed to test objectives 1,

2, 4 and 12 for enumeration representation clauses. The names

of these tests conform with the naming conventions for the ACVC

test suite provided by the Ada Validation Facility (Wilson,

1987a), making this work more understandable to and usable by

those familiar with the ACVC. A description of the ACVC test

objectives for validation tests in this thesis is found at

Appendix A; a description of the test naming conventions,

sample source code for the tests, and instructions on how to

obtain machine-readable copies are at Appendix B.

All of the tests developed were Class B tests: that is, a

compiler with a valid implementation of this feature should

generate compile-time errors for the test, because of the

test's illegal use of the enumeration representation clause.

Class B tests were developed because a majority of the test

objectives for enumeration representation clauses in the AIG

34

0

Jill

are written to detect illegal uses of the clause, Clagg A and

class C tests could have been written for other test objectives

to ensure that the compiler allowed correct uses of theS.

feature.4
I.

All of my validation tests, both prototype and

operational, were originally designed to include a set of Ada

language statements in a separate compilation unit that would
-S

implement all of the requirements specified in each test

objective of the AIG. The purpose was to keep the number of

test compilation units down, providing a more compact and

usable test suite. It later became apparent, however, that

separate tests had to be written for many of the sub-objectives

of a single test objective. The prototype validation tests

tested one objective per compilation unit. The operational

validation tests included multiple test programs per objective

because of restrictions that compilers could place on

acceptance of the Chapter 13 feature.

Detailed Prototype Performance Evaluation Test Design.

Following the system design objectives outlined in Chapter 3, I

designed a test that (1) isolated the enumeration

representation clause and would not be affected by

4 In retrospect, it was a mistake not to write more tests for
these other test classes. I assumed they would be no different
that other tests, so I didn't write any. In that assumption I
was wrong; I realized when I wrote executable tests for address
clauses that implementation may restrict how the feature may be
used.

~~35

%5, 35%

optimization; (2) would be accurate; (3) avoided operating

system distortions; and (4) would be repeatable.

The enumeration representation clause was isolated by

declaring two identical enumeration types (one control and one

test) specifying a representation different than the default

representation given by the compiler for the test enumeration

type, and allowing the control enumeration type to take the

default representation. By performing identical operations on

objects declared using the test and control types in a loop and

measuring the difference in the two loops' execution times, the

execution time associated with the use of the enumeration

representation clause could be determined.

Potential compiler optimization of the test was controlled

by a method used in the PIWG benchmarks, shown in an

abbreviated form in figure 3. GLOBAL, A_ONE, and the procedure

REMOTE are declared in package REMOTEGLOBAL, whose body is

- compiled after that of the benchmark, thus the values of AONE

and GLOBAL will now always be known to the compiler when the

benchmark is compiled. Therefore, the sequence of statements

in the benchmark cannot be changed by an optimizing compiler,
0

because the effect of the optimization could alter the logical

results of the code.

9.. Methods for eliminating operating system interference from

paging and execution of other processes have little to do with

the design of the benchmark itself, but rather with the

environment in which the test will be run. Benchmark tests

should be run on a system with no other user processes in

36

0

package REMOTE_GLOBAL is -- for explicit control
A_ONE : INTEGER; -- of optimization
GLOBAL INTEGER := 1
procedure REMOTE;

end REMOTE GLOBAL;

with REMOTEGLOBAL; use REMOTEGLOBAL;
procedure TEST is
begin
for loopcounter in 1 .. 100 loop

- GLOBAL := GLOBAL + A_ONE;
REMOTE;
(Test feature statements>

end loop;
end TEST;

package body REMOTEGLOBAL is -- must be compiled last
LOCAL : INTEGER; -- will be set to 0 at elaboration
procedure REMOTE is

* begin
GLOBAL := GLOBAL + LOCAL;

exception
when NUMERIC ERROR => REMOTE
-- cannot happen if test is working

end REMOTE; -- (prevents inlining
begin

AONE :1

LOCAL GLOBAL - A_ONE; -- really a zero but
end REMOTEGLOBAL; -- compiler doesn't know

Figure 3. PIWG Optimization Control Package

concurrent execution and with as many system processes disabled

as possible (Clapp and others, 1986: 764). I eliminated much

of the operating system interference by keeping the size of the

benchmark small (to reduce paging) and by running the benchmark

when the host computer had a low load, to reduce the effect of

other processes on the timing results from the benchmark.

Although the prototype test was to be run on a time-

. sharing system, I did not eliminate all operating system

J.

37

4 ,i-.

interference. The goal of this thesis was to develop

benchmarks for compilers targeted to embedded computers.

Operating system interference is not a problem with these

systems because the user has much greater control over the run

time library (or operating system) and can ensure that only the

benchmark is running when testing the compiler.

Repeatability of the tests was built into the benchmark by

providing a sound performance data reporting capability and by

making no assumptions about a set of conditions before the test

started. Repeatability of the test was proven in its actual

1use.

0 The PIWG benchmarks and benchmark support software were of

great use in the design for collection of timing data and for

avoiding optimization of the test programs. A description of

the PIWG software used in this thesis and instructions on how

* to obtain machine-readable copies may be found at Appendix C.

Using the design philosophy of the PIWG benchmarks, I designed

a performance benchmark that consisted of (1) a control loop

containing an operation on an enumeration object without the

use of an enumeration representation clause; and (2) a test

loop containing an operation on an enumeration object that used

J.%J an enumeration representation clause. This dual-loop approach,

as described in Chapter 3, is superior to others because it

- isolates the feature and eliminates the time associated with

overhead, such as loop control.

A.&

38

The design of this test, shown in figure 4, was modeled

after test designs for other Ada language constructs in the

PIWO suite of benchmarks (PIWG, 1986). In this design the

- .,

Control _TimeStart := SECONDS(CLOCK);
while <condition> loop

<optimization control statements>
<control version of feature>

*. end loop;
ControlTime_Stop := SECONDS (CLOCK);

Test_TimeStart := SECONDS(CLOCK);
while <condition> loop

<optimization control statements>
<test version of feature>

end loop;
TestTimeStop SECONDS(CLOCX);

Difference Time
(Test Time_Stop - TestTimeStart) -

(ControlTimeStop - Control_TimeStart);

Figure 4. Performance Benchmark Structure.

current CPU time is retrieved from the SECONDS(CLOCK) function

(DoD, 1983:Ch 9, 11) before execution of the control loop. The

control loop will be executed a sufficient number of times to

obtain the timing accuracy desired. Optimization control

statements, as described earlier, are placed in the control

loop, followed by statements that do not use the feature being

studied. At the end of the control loop, the current time is

again retrieved. The test loop is identical to the control

loop except that the feature being studied is used in the test

loop statements. The calculation at the end of the test

removes all bias associated with the loop overhead and calls to

the clock function, leaving the time associated with the use of

39

Nk e

0 A A

the feature. This calculation assumes that the test loop willI take longer to execute than the control loop since use of the

feature is normally assumed to add complexity to the test

loop. It is possible that the default (or control) use of the

features is less efficient than the test use of the feature.

In such cases, one should determine the absolute value of the

difference to determine the increase in performance

attributable to the test version of the feature.

Problems in Prototype Test Design and Certification.

Recall that the Ada LRM states, "An implementation may limit

its acceptance of representation clauses to those that can be

handled simply by the underlying hardware" (DoD, l983:Ch 13,

2). Therefore, although an implementation may implement a

feature such as enumeration representation clauses, that

implementation may restrict how the feature may be used. These

*i restrictions, in turn, may cause some validation tests to be

inapplicable for that implementation. If a test is ruled

inapplicable, the test is not run when the compiler is

validated. For example, an implementation for enumeration

representation clauses may allow the clause for explicitly

declared enumeration types, but not for derived types. Any

validation tests for derived types would therefore be

inapplicable, and the compiler simply would not be tested in

that area.

The difficulty ruling certain tests inapplicable is that

where a number of sub-objectives are listed for one test

objective, separate test procedures must be written for each

40

-S ,
, .'.'.' , .-.... :......................^.... ,..., ... ; ;_' , ,£ i e ' ;_vr..62

sub-objective, because some of the sub-objectives may be

inapplicable. For instance, in the example presented earlier,

if a test procedure tested enumeration representation clauses

for both explicitly declared and derived types, the test would

be declared inapplicable, even though the compiler implemented

enumeration representation clauses for explicitly declared

types. Because compilers may provide no, partial, or full

implementation of a feature, validation tests must be designed

to test all possible implementations. This makes the number of

tests that must be written increase dramatically as the number

of sub-objectives of a validation test objective increases.

A seeming flaw in the application of this benchmarking

approach is the assumption that use of a feature in an

application will cause the execution time for a sequence of

statements using the feature to increase. This may not be the

case. In fact, preliminary test of the benchmarks for
'

enumeration representation clauses showed the test loop took

less time to execute than the control loop, resulting in a

negative time difference between the loops. Other researchers

have found similar anomalies using the dual-loop method

(Altman, 1987:3).

The flaw is not in the dual-loop method, but in how it is

applied. In the prototype benchmarks, I was unable to

eliminate interference from the operating system, which

distorted the benchmark's execution. When the dual-loop

benchmarks were executed on embedded computers (with no

41

0 .

operating system interference) these timing anomalies were

eliminated (Kiemens, 1987).

Address Clauses and Interrupts Test Design

Now that the description of prototype test detailed design

has been completed, let us proceed to describe the detailed

design of the actual experimental tests.

Detailed Validation Test Design. As stated earlier, the

design objectives were taken from the ACVC Implementers'

*- Guide. The 23 test objectives test the ability of a compiler

to detect illegal uses of the address clause and to permit

* legal uses of the clause. All developed tests should be passed

by a compiler providing a full implementation of the address

clause. Therefore, class A or class B test programs were

written for all test objectives. The class A tests do not

contain run-time checks for use of the address clauses, but I

verified that these could easily be changed to class C (run-

time) tests by checking that the addresses given for the

objects, subprograms, etc. in the test are consistent with the

addresses given by the 'ADDRESS attribute applied to the same

-A objects, subprograms, etc. during the test execution (DoD,

1983:Chl3, 12). No other classes of tests could be reasonably

applied to this feature, since it affects only the location of

objects and executable statements when the test is compiled.

Detailed Performance Evaluation Test Design. The

'p-. benchmarks for address clauses and interrupts were designed to

. determine the time it takes for an application using Ada's

42

'p

4.,

interrupts feature to respond to an interrupt, because this

time is critical to embedded applications (Clapp and others,

1986:771). The objective of these benchmarks was to measure

the delay between the time the interrupt is raised and the time

the interrupt handling routine is entered (Seward, 1987).

Recall from Chapter 3 that the interrupts feature of Ada

allows an application to associate an interrupt with a task

entry, so that, when the interrupt occurs, the task entry is

called and the accept block for the entry, if any, is

executed. The detailed design of these benchmarks was based on

-4 three variables in designs using this feature: (1) the number

of interrupts that will be handled, (2) the number of tasks

that will be used to handle these interrupts, and (3) the

.,.. number of entries in each of the interrupt handling tasks.

The semantics of Ada tasking allow developers to write one

task with several entry points, several tasks with one entry,

or any combinatlon in between to handle the 16 possible

interrupts that MIL-STD-1750A computers may generate (DoD,

1982: 19) . Table II shows the configuration of the the

benchmarks designed for this feature. In all of these tests

-only one interrupt is raised, that of a floating point

overflow, generated by the benchmark itself. In order to

isolate and study the interrupt delay time associated with one

interrupt (i.e., floating point overflow), I designed the

- benchmarks so that only one interrupt could cause a call to a

task entry. If task entries had been associated with other

'p 43

.

Table II
Interrupts Benchmark Configuration.

Interrupts Entries
Test Name Handled Tasks per Task

INT _TESTI 10 10 1
INT _TEST2 10 5 2
INT _TEST3 10 2 5
INTTEST4 10 1 10
INT_ TEST5 3 3 1
INT_ TEST6 3 1 3
INT _TEST7 1 1 1

-*errupt; s that are known to occur during a program's

exeu~~r..these other interrupts could have had an affect on

7 e.a t.me of the interrupt being studied. For this

-a-r. SIX of the MIL-STD-1750A's 16 interrupts were not

ass-zia~ed with task entries i.n the benchmarks developed.

-5 (executive call) , interrupt 7 (timer A interrupt),

a-, .er'ru~t 9 (timer B interrupt) were not handled because

'2w wu1:ioccur too frequently; interrupt 0 (power down),

~.rrr~.tmachine error), and interrupt 15 (spare) should

..e hardiled by an application.

*T:TESTI, INTTEST2, INTTEST3, and INTTEST4 were

je V 9n * determine the effect the number of tasks and

~... esPer task had on interrupt response time. One would

exs - *!t variability In these results would come from the

-r.-reased overhead incurred by the task scheduler for the

t6.-chmarks with a h-gh number of tasks. On the other hand, the

rendezvous logic for those tasks with single entry points is

4. ss-zmrp~icated and should be more efficient.

44

. .-

INTTEST5. and INTTEST6 were designed to study the game

effects but restricting the interrupts that were handled in the

application to only those interrupts that were expected to

occur during the execution of floating and fixed point

instructions. Again, the effect of the number of tasks and

entries per task on interrupt response time was examined.

Finally, INT_TEST7 was designed as a baseline against

which the other benchmarks may be compared. It contains the

m:nimal number of tasks, entries, and interrupts handled.

The benchmarks were all designed to raise the floating

point overflow interrupt (interrupt 3) (DoD, 1982-19) by adding

one floating point object whose value is just below the largest

floating point number that may be stored to another floating

point object whose value is such that the operation causes an

overflow. No matter what the task/entry mix of the benchmark,

at least one task entry will have an address clause that ties

the entry to MIL-STD-1750A interrupt 3. The example shown in

figure 5, an abbreviated version of INT_TEST7, gives the format

for the interrupt delay benchmarks. A call is made to a

procedure that will return the current CPU time before the

floating point overflow is generated in the main procedure.

The floating point overflow is then caused, which should

effectively generate a task entry for the task entry tied to

interrupt 3. The accept block for the entry is then entered,

and a call is made to GETALLTIMES to retrieve the CPU time.

This time value is then stored in a global variable that is

made visible to the task and the main procedure through the

45

package GLOBALINTERRUPTMAKER is
function FLOATRETURN return float;

end GLOBALINTERRUPTMAKER;

with TIMEPACKAGE_1750A; use TIME_PACKAGE_1750A;
with GLOBAL INTERRUPTMAKER;
procedure INTTEST7 is

float-object :FLOAT:= 0.500000 * 2-0 ** 127;
delay TIME 1750A 0.0;
clock bias start TIME 1750A 0.0;
clock-bias-stop TIME_1750A 0.0;
beforeinterrupt TIME 1750A 0.0;
after _interrupt TIME 1750A 0.0;
pragma SHARED(after interrupt);

task INTHANDLE_3 is
entry interrupt3;
for interrupt3 use at 3;

% pragma PRIORITY(3);
* end INTHANDLE_3;

task body INTHANDLE_3 is
begin

loop
accept interrupt3 do

GETALLTIMES(after interrupt);

end interrupt3;

end loop;
end INT HANDLE_3"

begin -- INT TEST7

for i in 1 .. max values loop
GETALLTIMES(clock_ biasstart);
GETALL TIMES(clockbiasstop);
GETALLTIMES(before_ interrupt);

floatobject := floatobject +
GLOBAL INTERRUPTMAKER.FLOATRETURN;

delay := after-interrupt - (beforeinterrupt +
clockbiasstop - clock biasstart);

* end loop;
end abort INT HANDLE_ 3;
end INT_TEST7;

package body GLOBALINTERRUPTMAKER is
S...

function FLOATRETURN return float is
begin

return 0.50000 * 2.0 ** 127;

"I" end FLOAT RETURN;
end GLOBAL_ INTERRUPTMAKER;

Figure 5. Example Interrupt Delay Benchmark

46

V. .< .5 . ~ *~ .- . .* ... *

Ada pragma SHARED. After the accept block of the task entry

has finished its execution, control returns to the loop in the

main procedure and the interrupt delay time is determined. By

subtracting the time for a call to the GETALLTIMES routine,

the effect of the timing calls may be eliminated. A sample of

the benchmarks developed in this thesis and instructions on how

V to obtain machine-readable copies are at Appendix C.

Validation Test Design Problems. The primary difficulty

* with writing validation tests for address clauses is the

representation of the address in the test. The syntax of the

address clause is:

for simplename use at simple expression;

(DoD, 1983:Ch 13, 7).

The simpleexpression specifies the address for the entity

givern by simple name, and the expression must be of the

implementation-defined type ADDRESS, declared in the Ada

Package SYSTEM (DoD, 1983:Ch 13, 7,10).

While an address given in the address clause, whether

interpreted as an address or an interrupt level, will

ultimately be translated to some physical memory address on the

-underlying hardware, the type ADDRESS may be the pre-defined

" .Ada type integer, positive, natural, access, private, limited

private, or even some other type declared by the

implementation. Therefore, validation tests had to be designed

in such a way that addresses were not explicitly given in the

tests. Consider the simple example at figure 6 of an address

clause. In this example, an object of type integer called

47

.1'. p

counter : Integer;
for counter use at 100;

Figure 6. Address Clause Example

counter has been declared, and the compiler has been instructed

to store counter at address 100. This is legal for compilers

that recognize 100 as a valid value for type ADDRESS. Another

compiler, with a correct implementation of the address clause,

may reject this example because it has an additional

restriction that addresses for objects be greater than some pre-

defined number, for example, 1000. Because of differences in

computer architecture and restrictions an implementation may

place on address clauses, there could be a separate set of

legality rules for address clauses for each Ada compiler. The

problem, then, is how to write syntactically legal validation

* tests that all Ada compilers claiming a correct implementation

of address clauses and interrupts could pass.

The first solution is to write tests specifically for each

implementation. Currently there are 137 validated Ada

compilers, and the number is growing (AdaIC, 1987). Given the

number of Ada compilers, this would prove to be unworkable

because it would severely complicate the maintenance of the

ACVC test suite, as well as running counter to software

engineering principles of usability and portability.

Another solution, and one that has been used in tests for

other implementation defined language features in the ACVC, is

A- 48

to replace the feature with a macro (Brashear, 1987a), a

symbolic value that would be modified by each implementation.

The example in figure 6 would be modified as shown in figure 7.

counter: Integer;
for counter use at $objectaddress;

Figure 7. Address Clause Example with MacroI.

This 'master version" test would then be modified by each

compiler implementer when the compiler was validated, replacing

$objectaddress with a legal address for his Implementation.

This approach, although workable, would be cumbersome, given

the fact that these macros may appear hundreds of times in the

tests for just one language feature.

The approach used to retrieve legal addresses in this

thesis project, then, was to write a package ADDRESSPACKAGE

that declared a number of objects of type ADDRESS in the

visible part of the package. A number of objects, subprograms,

packages, tasks, and task entries were declared in declarative

blocks in the executable region of the task body. The

addresses for all these entities were extracted using the

'ADDRESS attribute (DoD, 1983:Ch 13, 12) and stored in the

visible address objects. Since a declaration of an entity in a

block is effective only for the duration of the block, it was

legal to reuse these addresses because the entities declared in

the ADDRESSPACKAGE body no longer existed when the addresses

* were used in a validation test. This worked well with one

'0 49

S.%

*' compiler that placed few restrictions on the simple expression

in the address clause. Another compiler restricted the address

clause to static values that must be set when the compilation

unit in which the address clause is used is compiled. For this

compiler, constant objects of type ADDRESS were declared and

assigned values that would be accepted by the implementation.

This method means that each implementer will have to provide

the package body for ADDRESSPACKAGE tailored to his

implementation when running the validation test suite.

While this approach adds another package to the ACVC test

support software, it eliminates the need for large number of

changes to ACVC tests that would be required to tailor those

tests to a particular implementation, and eliminates the need

for tests written particularly for each implementation.

Another problem, discussed earlier with enumeration

representation clauses, is that implementations may restrict

the use of address clauses. This means that a separate test

program must be written for each combination of sub-objectives

of a test objective. For example, test objective 11 for

address clauses states:

Check whether an address clause can be given for an
object declared in a declarative part.
Implementation Guideline: Use a variable and
constant having the following types: enumeration,
integer, floating point, fixed point, array, record,
access, private, limited private, and task.
Implementation Guideline: Include a check for
declarative parts of subprograms, blocks, and package
bodies (Goodenough, 1986:Ch 13, 54).

50

,'

, *

9I

Since an implementation could conceivably restrict its

acceptance of address clauses to those given for integer

variables, 20 test programs would have to be written for this

test objective, because there are 20 different combinations of

objects, variables, and constants. Each of the sub-objectives

would have to be written as a separate test, because any test

that contained a use of the feature that the compiler

restricted would be ruled inapplicable (Wilson, 1987a) . Since

each compiler's implementation may vary between none and

complete, the tests must be written so that if a test is ruled

inapplicable, it does not contain a test for a use of the

feature that the implementation does support.

Performance Evaluation Test Design Problems. In the

course of this research, I found that the implementation of

package CALENDAR provided by the compiler being used to develop

the benchmarks did not return the current CPU time with the

precision necessary to accurately measure interrupt delay

time. This compiler's implementation of the pre-defined type

DURATION is:

type DURATION is delta 2.0 ** (- 12)
* range -86_400.0 .. 86_400.0;

The current CPU time value returned by the SECONDS function in

package CALENDAR is a subtype of DURATION, therefore the CPU

time is accurate only to 244 microseconds. Past experience has

shown other interrupt delay times to be in the 10 to 100

microsecond range, thus the precision of the elapsed CPU time

,. in package CALENDAR was inadequate for this research. An

51

-e

alternative package, TIMEPACKAGE_1750A was written that

included three procedures: GETALLTIMES,

RESET INTVECTORS_7_AND_9, and GETTIMERS; and declared a

.floating point type, TIME_1750A. GETALLTIMES calls

GETTIMERS to retrieve the current value of the TIMER A

register of the MIL-STD-1750A. Because the TIMER A register is

incremented every 10 microseconds (DoD, 1982) GET ALLTIMES can

calculate the current CPU time (in seconds) by dividing the

value of the register by 10,000 / second. If, for example, the

current value of the TIMER A register was 1234, the elapsed

time since TIMER A was set to 0 would be 12,340 microseconds or

4. 0.01234 seconds. GETALLTIMES, then, was able to return the
.

%, current CPU time accurate to 10 microseconds. After its

correct operation was verified, the GETALLTIMES procedure in

TIME_PACKAGE_1750A was used to retrieve CPU time in the

benchmarks in the remainder of this research. Appendix F

contains a detailed description of TIMEPACKAGE_1750A.

Summary

This chapter described the detailed design of the

validation tests and benchmarks developed for the prototype

feature, enumeration representation clauses, and the

[' operational features, address clauses and interrupts.

The validation tests were designed to test a compiler's

4 ability to recognize legal uses of the feature and also to

detect illegal uses of the feature. The problem of non-

portability of the tests because of differing implementations

.1' 52

S!

of the implementation-defined type ADDRESS was solved by

placing all objects of type ADDRESS that would be used in the

validation tests in one package and having the implementer

supply the package body.

The benchmarks for interrupt delay time measure the delay

from the time an interrupt is caused with a floating point

overflow to the time the accept block of the interrupt handling

task is entered. A support package, TIME_PACKAGE_1750A, was

developed to return CPU time with greater precision than

'C available with the implementation of package CALENDAR found in

the compilers used in this research.

0 The next chapter will validate (or certify) the approach

and the tests developed in this research, report the results of

Vthe tests, and analyze the results.

" ."5

' 55.

*/5
+Jl53

•!

I

V. Analysis and Results

The purpose of this chapter is to certify the test

software written in this research and to report the results of

the validation and performance evaluation tests for the Chapter

13 features studied. I will use the term *certification'

instead of 'validation" to avoid confusion with the validation

tests. The certification of these tests will ensure that the

tests do indeed test what they claim to test.

In order to keep the potential distribution of this thesis

as wide as possible, no actual compiler names will be used when

reporting validation or benchmark results. The compilers that

were used will be generically described as shown in table III

below.

Table III
Generic Compiler Description

Compiler Host Target

A DEC VAX-11/780 DEC VAX-11/780
B DEC VAX-11/780 MIL-STD-1750A
C DEC VAX-11/780 MIL-STD-1750A

All of the compilers used in this thesis were validated when

the research was performed. The benchmarks developed in this

thesis were executed on a Sperry 1631 MIL-STD-1750A processor.

VAX is a trademark of Digital Equipment Corporation.

54

Certification of Validation Tests

This section will certify that the validation tests

written in this thesis will indicate whether a compiler's

implementation of address clauses and interrupts conforms with

the specification for those features in the LRM. Recall from

Chapter 4 that two classes of validation tests were written:

Class A tests, which determine a compiler's ability to

recognize legal uses of a feature, and Class B tests, which

determine a compiler's ability to recognize illegal uses of a

feature. I argue that certification of these validation tests

arises from the following evidence: the design of the tests

was made as simple as possible; potential for error in the use

of the address clause was minimized by localizing all address

values in one package; all non-address clause syntax errors

were eliminated; complex test cases were developed separately:

implementation-dependent constructs were avoided; and finally,

the tests were reviewed for correctness by the primary

developers of tests for the ACVC test suite. Each of these

contributions to test certification is described below.

Test Simplicity. To test whether a compiler could use a

feature under a specific set of conditions, the validation

tests were written to include those conditions and no others,

lest spurious side-effects be introduced.

Minimization of Error-Prone Constructs. This technique

was used to certify the development of the ADDRESSPACKAGE for

the address clause and interrupts tests. Each of these tests

used a constant or variable from the visible part of

55

%

- _ . - r • : : - W f W IW-WV W 1 t ,-l". ''W , - v r r 'rr r- - r. - = .i -. -

ADDRESS PACKAGE for the address of a construct in the address

, clause. By declaring all addresses in one package and using

. that package for all tests, the potential for error in the

syntax of the address clause was greatly reduced. Such use

eliminated the need to enter explicit addresses in each of the

*' many (110) tests, while ensuring that the Ada compiler would

detect errors such as misspelled address variable names by

identifying them as undeclared variables, since all variables

must be explicitly declared in an Ada program.

Certification of Test Correctness Without the Feature. In

developing the validation tests for address clauses and

interrupts, I assumed that the Ada compiler being studied

, correctly implemented all other language constructs used in the

test. As each test was developed for a specific use of Ada's

address clause, a similar version that did not make use of the

address clause (but identical in every other way) was also

developed, compiled, and examined for syntax errors.

Performing these parallel compilations ensured that the

validation tests developed did not contain illegal uses of

other Ada constructs that could affect the outcome of a

0 validation test.

Combinations Tested Separately. The features being

studied, address clauses and interrupts, often could be used in

a number of different ways. Because compilers are free to

reject the use of a feature under certain conditions (e.g.,

allowing address clauses for variables but not for constants),

one test was written for each use. Writing separate tests for

56
Sj

., *,*

W - 0uT-W. 100 W'. f- I W.- W~ W -umw,:

combinations of the feature's use ensured that none of the

tests would be ruled inapplicable whili they still contained

tests for uses of the feature that a compiler claimed to

support. Therefore, a compiler would be tested for all uses of

the feature that it claimed to implement. Should a compiler

fall a test, the specific nature of the test would also help to

pinpoint the set of circumstances that caused the compiler to

fail.

Eliminate Implementation-Dependencies in Tests. In each

test design I used only those constructs (excepting address

clazses and interrupts) that all compilers must support. For

example, all compilers have to support a data type named

INTEGER but do not have to support the type named

SHORTINTEGER, so tests that required integer objects were

-, declared using the INTEGER type.

Review by ACVC Test Developers. Finally, the tests

developed in this thesis were reviewed for accuracy and

correctness by the primary ACVC test developers for the Ada

Validation Facility. These developers found that the

validation tests developed in this research were 'on target,

the approach used in developing the tests was *sound, and the

use of ADDRESSPACKAGE to solve the problem of non-portability

of address clauses agreed with the developers' solution for

this problem (Brashear, 1987b).

The design techniques and software reviews built in to the

design of these tests ensure that the test suite developed for

address clauses and interrupts will detect illegal

57

54%

V. 'emer.tations of these features and certify valid

., .[.emertatlons of these features. The test simplicity,

:.Ir~m~zat--,r~ fc error-prone constructs, and parallel testing

.h the feature preclude the introduction of erroneous

_@Ed f Aziz constructs that are not being tested.

5/ lei g.n the test suite to test elementary uses of

_rauses and interrupts, I have designed a test suite

. " a--;'e. to many compilers with varying

* . r :. td:i_-r, of these features. This testing of elementary

_ .c" ffea-ure avoids more complicated combinations of the

S" whlcr makes the test more portable. The review

;_., .ary A-'V' test developers provides the assurance that

•a! to that developed in this thesis would be used

.erffcri actual Ada compiler evaluations.

- ere.:-.e this suite may be used to answer the first

,e thesis problem. Developers of embedded

"". before they use a compiler's address clause or

* . ;~ e~tureirn their application, may apply these

tests developed in this thesis to their compiler and

, "hat compiler's implementation is valid, and

... ' table for their application.

.,. .Test Results

E eca-se of the varying level of Chapter 13 implementations

• he LRM allows, discussed in chapter 4 of this thesis,

a-me va-ldation tests for Chapter 13 features may be

iraprlicabie for certain compilers. The only way for a

58

e,

/o

Z - - N -%P % Fr X "N - W WU Vri w V I XwYW J

compiler to fail a validation is for it to fail a test that is

applicable. The results for the validation tests will be

reported as passed (the compiler implemented the feature

correctly), failed (the compiler did not implement the feature

correctly), or inapplicable (no test was made).

Enumeration Representation Clauses. The primary result

obtained from this set of tests was a greater understanding of

the thesis problem of validating Chapter 13 features. While

compiler A passed all four tests that were written, these four

tests examined only four of the 13 test objectives for

enumeration representation clauses. No determination of a

language feature's validity of implementation may be made on

such incomplete testing, because a compiler must pass all

applicable tests to be certified as a valid Ada compiler. In

the case of compiler A, all test objectives were applicable to

its implementation of enumeration representation clauses, so

all tests would have to be run before it could be certified as

a valid Ada compiler.

Address Clauses and Interrupts. One hundred and ten tests

were written to test the 18 objectives for address clauses and

the five objectives for interrupts. A complete list of the

tests run on the compilers and of the results of those tests is

provided at Appendix D.

Compiler A passed 58 tests, failed none, and was not

tested on 52 because they were inapplicable. Compiler B passed

63 tests, failed 1, and was not tested on 46 inapplicable

59

0.

tests. Compiler C passed 58 tests, failed none, and was not

tested on 52 inapplicable tests.

* The test that compiler B failed, test BD5102A, tests the

ACVC Implementers' Guide objective: "Check that an address

clause cannot be given for a (task) entry family (Goodenough,

* - 1986:56) This is a class B test that should fail compilation

because it includes an illegal use of the address clause.

Compiler B, however, compiled test BD5102A without detecting

the error, thus failing the test. After discussing this failed

test with the compiler developers, the error that caused

S_. compiler B to fail test BD5102A was corrected. Because the

later version passed all tests, and I determined that the

corrected version did not affect the benchmarks developed in

this thesis, compiler B was used to develop and run the

benchmarks for interrupt delay time in this thesis.

Using the guidelines of the Ada Validation Facility

(Wilson, 1987a), compiler A and compiler C's implementations of

address clauses and interrupts would be ruled valid because

they passed all applicable tests. Compiler B's implementation

originally would have been ruled invalid because it originally

failed test BD5102A. When the compiler was corrected and all

applicable tests were passed, then compiler B's implementation

would be ruled valid as well.

Certification of Performance Evaluation Tests

This section will answer the question: how do we know that

the benchmarks developed in this thesis for interrupt response

60

ON

time present results (or even study the problems) of interest

to the embedded applications developers? This question will be

answered by reviewing how the interrupts feature is currently

implemented and used, then expanding upon this review to

identify how the feature could alternatively be used. I will

then show that the benchmarks developed to measure interrupt

delay time for interrupts associated with task entries measure

the effects of the various uses of this feature.

Current Use of Interrupts Feature. Because compilers that

implement address clauses for task entries are Just recently

becoming widely used, there currently does not exist a body of

documented practical experience in the feature's use. I found,

however, through personal and telephone interviews with Ada

compiler and application researchers and developers that use of

task entries associated with interrupts is currently being

dictated by the compiler's implementation of the feature or by

personal choice (Johnson, 1987). I found that some developers

were using compilers that restricted the interrupt-handling

task to be a single-entry task. Other developers were using a

single-entry task to handle each interrupt, even though their

compiler did not place this restriction on the feature's use.

I did not find, however, that this design of interrupt handling

tasks was based on an informed investigation of the efficiency

of possible alternatives. These alternatives will be discussed

below.

Alternative Use of Interrupts Feature. The semantics of

Ada tasking present a number of alternative methods for

61

irS~~~~~~~W rwrr I.-W W-t - .- Srr.. .wrr

associating any number of interrupts with task entries using an

address clause. One may wish to handle all of the possible

interrupts in an application or just a subset (even of size

$ one). Assume, for example, a developer wishes to handle four

of 16 possible interrupts in his application. Although there

are others, three possible designs for the tasks are: (1)

declare one task with four entries, each associated with one of

the interrupts; (2) declare two tasks with two entries per

task: or (3) declare four tasks with one entry per task. The

three major considerations, then, in the design of interrupt

handling task(s) , defined by the syntax of Ada and the

7configuration of the target, are: (1) the number of interrupts

to be handled; (2) the number of tasks to handle the

interrupts; and (3) the number of entries per task.

The benchmarks developed in this thesis form a

representative sample of the various techniques for associating

tasks with interrupt. Recall from Table 1 in chapter 4 that

.INT TESTI, INT_TEST2, INT_TEST3, and INTTEST4 are all designed

to handle a high number of interrupts (10) on the

MIL-STD-1750A's 16 possible interrupts (DoD, 1982:19), with

designs ranging from 10 tasks with one entry each to one task

with 10 entries. These benchmarks produce a comparative
.

measure of interrupt delay time for the interrupts feature as

it is currently being used, and as it could be used. INT TEST5

" , and INTTEST6 test the task entry mix with a medium (three)

* number of interrupts being handled. INTTEST7 provides the

baseline, handling one interrupt with one single-entry task.

62

0J

By measuring the interrupt delay time for this feature as it is

currently being used as well as for other possible uses, the

benchmarks provide the answer to the question: 'How efficient

is this feature's (address clauses for interrupts)

-; implementation*"

The reader might ask, "Does it make sense to write one

task to handle a number of interrupts?' The answer is "yes,'

N .because interrupts are often related, and the interrupt-

handling functions are similar. For example, if the operations

one might perform to handle a floating point overflow and a

fixed point overflow are similar, it would be logical to

localize these operations in one interrupt handling block.

The results from these seven benchmarks demonstrate how

they provide comparative information on the efficiency of the

compiler. Not only do they indicate whether the interrupts

feature is efficient enough for a particular application, they

4 also indicate the most efficient way to use this feature.

Some developers were not using Ada's interrupts feature

because they said it was more efficient to handle interrupts in

the run-time executive or operating system. Others were using

the feature in only one way (one singe-entry task for each

interrupt being handled) and had not investigated other

approaches. If the embedded systems developer is to write an
0.

application that will execute as efficiently as possible, he

V' must know the most efficient way to use a particular feature

S"' for his compiler/target combination. The benchmarks for

interrupt delay time provide these measures of efficiency for

63
0

the interrupts feature as it may be used in an application.

The benchmarks will either provide additional support for the

single task/multiple entry method of interrupt handling in an

application or prove it lacking and provide the embedded

applications developers the impetus to use alternative, more

efficient, designs for interrupt handling.

Performance Evaluation Test Results

This section will report the results of the benchmarks

developed in this thesis. The benchmarks were compiled with

only compiler B and run on the Sperry 1631 MIL-STD-1750A

* computer because B was the only compiler available during my

research that implemented the interrupts feature. The results

reported here, therefore, will not be used to compare the

relative efficiency of one compiler to another. The results do

indicate that these benchmarks may be applied to compilers

supporting address clauses for interrupts to determine the most

efficient use of the feature.

Enumeration Representation Clauses. Test A13_3_3C,

designed to measure the effect of performing a successor

operation on an enumeration object given an alternate

representation, was run on one self-targeting compiler,

compiler A. The result from this benchmark was a negative mean

(test loop time - control loop time) and a large standard

deviation. These results, skewed by the effect of the

operating system on the benchmark, reinforced the need to avoid

these distortions as discussed in Chapter 3.

464

-4

Address Clauses and Interrupts. The seven benchmarks for

measurement of interrupt delay time for interrupts associated

with task entries determined the mean interrupt delay time of

the floating point overflow interrupt. This calculation was

* based on 100 floating point overflows generated in a loop in

the benchmark. Additionally, the total elapsed time for the

benchmark is given as an indication of the overhead associated

with the various methods of interrupt handling. The results of

the benchmarks are presented in Table IV below. The mean and

Table IV
Interrupts Benchmark Results

Standard Elapsed
Mean Deviation Time

Test Name (seconds) (seconds) (seconds)

INTTESTI 7.365 E-4 7.441 E-6 3.819 E-1
INTTEST2 7.731 E-4 7.020 E-6 4.497 E-1
INTTEST3 7.958 E-4 7.691 E-6 5.240 E-1
INTTEST4 7.906 E-4 5.914 E-6 6.360 E-1
INT TEST5 7.395 E-4 7.641 E-6 3.799 E-l
INTTEST6 7.585 E-4 6.314 E-6 4.708 E-1
INTTEST7 7.341 E-4 6.965 E-6 3.810 E-1

standard deviation were calculated using a sample of 100

interrupts generated in each benchmark. The sample size of 100

was chosen to ensure a level of reliability in the results, so

that a difference in the interrupt delay times could be

demonstrated if it existed. The mean, standard deviation, and

elapsed time between the first and last floating point overflow

were calculated in the benchmark.

65

Assuming that the interrupt delay times are normally

distributed, I used a two-sample t test and a level of

significance of 0.01 to find that the mean interrupt delay time

for INTTESTi was less than that for INTTEST2, INTTEST3, or

INTTEST4 (Larsen and Marx, 1986:364). Likewise, I found that

the mean interrupt delay time for INTTEST5 was less than that

for INT_TEST6. The calculations for the two-sample t test are

found in Appendix G.

These results show that the design of the interrupt

handling tasks does have an effect on the interrupt

delay time. Whether the benchmark is handling a high (10) or

medium (3) number of interrupts, the most efficient approach in

terms of minimum interrupt delay time and tasking overhead (as

measured by the elapsed time of the benchmark) is to write a

single entry task for each interrupt being handled in the

application. This does not mean, however, that the single-

entry task approach will be the most efficient for all

compiler/target combinations. These benchmarks may be applied

to other compilers to determine the most efficient approach for

particular applications.
I

Summary

This chapter presented a certification of the validation

and performance evaluation tests developed in this thesis, and

reported the results of those tests on three validated Ada

compilers. Validation test design techniques and a design

review were described to certify that the validation tests will

66

6

'C determine the validity of a compiler's implementation of Ada's

address clauses and interrupts features. The benchmarks were

certified by showing that they measured interrupt delay time

for the interrupts feature as it is currently used and as it

could be used.

The results of the validation tests for three compilers,

in which one compiler initially failed (and then later passed)

one test, were detailed. This reinforced the idea that a

validated Ada compiler may not implement all of the untested

features correctly. Finally, the results of the benchmarks

compiled with compiler B and executed on a Sperry 1631

MIL-STD-1750A processor were presented, showing the single-
WI

entry task approach for the design of interrupt handling tasks

to be the most efficient approach for the compiler/target

studied.

The next chapter reviews how well the work in this thesis

solved the thesis problem, draws conclusions about this

research, and lists recommendations for future study.

.,

-,p

2-'.

67

f°et

NP
&'I.J

VI. Conclusions and Recommendations

This chapter summarizes how the approach used and software

developed in this research answered the questions posed in the

thesis problem, presents conclusions about this research, and

outlines areas for future research.

The Problem Revisited

Recall from Chapter 1 that there were two questions to be

answered by potential users of Chapter 13 features before these

features were used in embedded applications: (1) does the

compiler's implementation of the feature conform to the

definition of that feature in the LRM and (2) is the

implementation of the feature efficient enough for the users'

application? The first half of the thesis problem, concerning

the validity of the implementation of address clauses and

interrupts was solved by the validation tests written for those

features. The design techniques used in the development of

these tests, as discussed in Chapter 5, ensure a complete,

accurate, and error-free test suite for Address Clauses and

Interrupts.

The second part of the thesis problem, the efficiency of

the feature, was more difficult to define and quantify so that

it could be tested. At the outset, the two metrics used most

often to quantify 'efficiency* were time (execution speed) and

space (amount of memory used). As the research progressed,

S,time became the primary metric because of advances in the
"A.

memory capability of the MIL-STD-1750A processor.

68

IJI
0°°

* -. *. .

I was able to determine, through numerous interviews, how

the interrupts feature was being used by embedded systems

applications researchers and developers. From this I designed

" - a suite of benchmarks and support software that measured the

*efficiency of the feature as it was currently used as well as

alternative uses allowed by the syntax of the features

specified in the LRM. These benchmarks, then, answer the

second half of the question in the thesis problem.

Therefore, this thesis shows that the problem can be

solved and demonstrates this fact by answering the validity and

Vefficiency questions for address clauses and interrupts.

Conclusions

At the beginning of this thesis project, I felt that the

emphasis of the research should be on benchmarking Chapter 13

features, and that validation of those features was a necessary

N" (but not very difficult) step on the way to that goal. As the

research progressed, it became increasingly apparent that

validation and performance evaluation were complementary4.?i

disciplines of equal importance. Before Ada researchers

*measure a compiler's efficiency with benchmarks, they must know

that the feature or construct being studied is correctly

implemented. If compiler validation is not performed,

non-valid implementations may appear to be more efficient when

benchmarked because these implementations may not provide all

the capability of a valid implementation.

69

PM -F I PWTW*

The approach used in this thesis project to determine the

validity and efficiency of compilers' implementations of

address clauses and interrupts may be applied to other

features. This application assumes, however, that researchers

and developers can identify the features to be tested and how

to test them. The difficulty of this research is not so much

in the design of validation tests and benchmarks, but in

determining what to test, why to test it, and how to write a

valid test. I was able to prioritize the Chapter 13 features

for study by interviewing Ada researchers and developers to

determine what features were most important to their

applications. I mistakenly assumed that there would be a

S.i" strong consensus among embedded application developers

concerning what was 'most important' in Chapter 13. The

reality was (and is) that compiler implementations are being

improved just as new embedded applications problems are being

solved. No one has a list of exactly what the 'problems of

embedded applications' are. Although there is some overlap,

each developer has his own set of problems, often unique to his

application.

Just as there are varying levels of Ada's use in

- .developing embedded applications, so too are there varying

levels of interest in the Chapter 13 features. Some developers

interviewed in this research said that they did not plan to use

any Chapter 13 features, because they felt that the same

functions could be performed more efficiently with assembly

language, JOVIAL, or other languages for embedded

70

0%

! %'-..

applications. DoD Directive 3405.1, which mandates the use of

Ada in new applications, should increase the interest in how to

test the validity and efficiency of Chapter 13 features.

Embedded applications developers will either use Ada or request

a waiver because the current technology cannot solve their

problem (DoD, 1987). In either case, these developers will

have to find objective answers to questions concerning the

validity and efficiency of Ada compilers, with emphasis on the

Chapter 13 features that are so vital to the success of

embedded applications. Whether Ada is or is not used for

developing new embedded applications, the decision will have to

*" be an informed one.

Validation and performance evaluation tests also generate

a positive result that is not part of their design, but is a

* by-product of their existence. This result is the cause-effect

relationship one researcher found between the release of

compiler benchmarks for Ada language constructs and efficient,

complete implementations of those constructs in compilers

released after the wide distribution of those benchmarks. This

heightened cross-flow of information concerning efficiency,

validity, and shortcomings of various compiler implementations

will increase the pool of knowledge about those

implementations, increase competition between compiler vendors,

and result in improved development tools for those using Ada

for embedded applications.

There has been some discussion that the distribution of

the Ada Compiler Evaluation Capability (ACEC) , described in

71

%~ %

"ha;Ier 2, may be limited because of concerns about misuse of

.e A-EC to label compilers as 'good' or 'bad with respect to

r.e construct or feature. Although the misuse of any

eva.udt.on tool is possible, the potential for increase in the

Vi
'

.
.
tY c! implementations of Ada compilers, I feel, outweighs

- erevent m-suse of the ACEC test suite. The AJPO

Sre'ease the ACEC to widest possible distribution,

- -r-=-z pa2n it on the Ada Software Repository, in a fashion

t that used for the SIGAda PIWO benchmarks, and

er.__rage :s proper use with an aggressive education program.

:re of the goals of this thesis project was to develop

ter.-hrnarks that could be applied to any Ada compiler targeted

., to the MIL-STD-1750A processor. As the research progressed, it

became apparent that the implementation-defined features of

earh compiler used in these benchmarks made it difficult to run

the benchmarks on another compiler/target combination. Just

because an embedded application is developed in Ada does not

% necessarily mean that the application is portable without

modification. Because certain features and constructs used in

the application must be tailored to the underlying hardware,

some redesign and modification may be necessary to re-host the

. ,application on another processor. The software engineering

concepts that Ada enforces, (i.e. data typing, constraint

checking, etc.) will make this process easier than it would be

with an application developed in assembly language, because

only the Chapter 13 features will have to be modified for the

e, application to be run on the new processor.

72

• ' *- o, -"."* -*'" ".
,' - ' " - ' .W ' J ,

Jl' "W '' '" " ' " %

Recommendations for Future Research

Although Ada compilers currently do not have to implement

all of the features in Chapter 13, a complete validation test

suite for those features would further stimulate development of

implementations of Chapter 13 features. The goal of a future

research project would be to complete the ACVC test suite for

Chapter 13 of the LRM. The current test design objectives of

the ACVC Implementers' Guide may have to be extended to allow

the tests to check memory locations, word length, data

alignment, etc., using tools other than test software written

in Ada. Having the compiler check one feature, such as an

address clause, by using another feature, such as the 'ADDRESS

attribute, is not the best way to validate compiler features.

If a compiler vendor is going to do a poor job implementing a

feature, or do something that is not expected or illegal, one

would assume that he would be smart enough to avoid

inconsistency in his implementation by implementing a

complementary construct (in this case the 'ADDRESS attribute)

in a similar fashion. For example, if one uses an address

clause to store an object at location 500, but the

implementation actually stores the object somewhere else, the

compiler implementer may implement the 'ADDRESS attribute to

return 500 when it is applied to the object in question,

-w indicating that the implementation of address clauses was

valid. This future research would develop alternatives to

using one compiler construct to determine the validity of

another.

it' 73

'r 4

1

C.

Another research topic, determining the areas of weakness

of the ACVC, may require the efforts of many researchers. Some

have argued that by allowing compiler vendors to know the exact

structure of the ACVC test suite, minimal implementations may

be designed to pass the specific tests. This future research

project would seek out the holes in the ACVC, and develop tests

to fill those holes. The project would determine whether or

not an implementation that does not comply with all of the

specifications in the LRM could possibly pass the validation

test suite. In short, it would validate the validation test

Vsuite. Some may argue that developing validation tests for a

validation test suite could be recursively applied

indefinitely. Although a validation review of the ACVC test

suite could not be proven complete and valid itself, it has the

potential to uncover and correct errors and incompleteness in

the ACVC test suite. The importance of the ACVC test suite to

the development of Ada compiler technology makes this project

well worth the effort.

,

e.-g

74

-'%

- Appendix A; Validation Test Objectives

This appendix contains the test objectives for the Chapter

13 validation tests developed in this thesis. All of the

information in this Appendix is taken from the ACVC

Implementers' Guide (Goodenough, 1986:Ch 13, 39-40, 53-56).

Enumeration Representation Clause Test Objectives

Ti. Check that a record representation clause cannot be givenfgioen: ' for:

- an expanded name that denotes a record type;
- a name declared by an object declaration;
- a name declared by a subtype declaration;
- a type declared by a private type declaration prior

to the full declaration of the type;
-. an incomplete type prior to the full declaration of

the type;
.- "a type having a subcomponent of an incompletely

declared private type, prior to the complete
declaration of the composite type;

- .a type that is not an enumeration type

Implementation Guideline: In each case, use a clause that, if
possible, would be allowed for the actual type or for the
completely declared type.

T2. Check that two enumeration representation clauses cannot
,V be given for the same type.

Implementation Guideline: The two clauses should specify
identical representations.

T3. Check that an enumeration representation clause cannot be
given:

- in a package specification for a type declared in an
inner package specification;

.- in a package or task specification, for a type
declared in an enclosing package specification or
declarative part;

- in a package body for a type declared in the
corresponding package specification;

- after the occurrence of a body in a declarative part.

T4. Check that an enumeration representation clause cannot be
given after a forcing occurrence for the type.

75

I
.... "~ . v

T5. Check that if an enumeration representation clause can be
given, it can be given after an occurrence of the type name in
an expression of a pragma.

T6. Check that the name of the enumeration type (or a subtype
of the enumeration type) cannot appear as a choice in the
aggregate or in one of the expressions.
Implementation Guideline: The name should be used in an
attribute (e.g. , 'VAL) that delivers a value of the required
type.

TIl. Check that an enumeration representation clause cannot be
given for a derived enumeration type if the derived type
definition imposes a constraint of if the parent type has
derivable subprograms.
Implementation Guideline: Write separate tests for these two
cases.

T12. Check that integer codes must be given for each
enumeration literal of the type.
Implementation Guideline: Check that neither too many nor too
few codes ca. be given.
Check that nonstatic integer codes are not allowed.
Implementation Guideline: Use nonstatic universalinteger
expressions.
Check that a choice cannot be nonstatic.

T13. Check that the same integer code cannot be given for two
enumeration literals.
Check that the integer codes must obey the predefined ordering
relation for the type.
Implementation Guideline: Include some aggregates in which
choices do not appear in the order defined for the type, and
for which an ordering operator has been explicitly declared.
Check that a choice in the aggregate must be a value of the
enumeration type.

T14. Check whether an enumeration representation clause can be

given for an enumeration type. If so, check that such types

*can be used correctly in ordering relations, in indexing
arrays, in attributes, and in generic instantiations.
Implementation Guideline: Include cases where the integer codes
have negative values and in which they do not have consecutive
values.
Implementation Guideline: Combine this check with various

0 forms of aggregate: all choices named (when some enumeration
literals are character literals) ; no choices named.
Check that an enumeration representation clause can be given in
the visible or private part of a package for a type declared in
the visible part.
Implementation Guideline: Repeat the checks for enumeration

*representation clauses given in a generic unit.

76

T15, Repeat T14 for a derived enumeration type, including when
the parent type has an enumeration representation clause given.

T21. Check that the aggregate in an enumeration representation
clause cannot be considered ambiguous.
Implementation Guideline- Declare more than one one-

4% dimensional array type that has the enumeration type as its
index subtype.

T22. Check whether an enumeration representation clause can be
given for a type derived from a type declared in a generic
instantiation.

Address Clause Test Objectives

Ti. Check that the expression in an address clause must have
the type SYSTEM.ADDRESS.

T2. Check that an address clause is illegal if a with clause
*O naming the predefined package SYSTEM does not apply to the unit

containing the address clause.
Implementation Guideline: Check for objects, subprograms,
packages, tasks, and entries.

T3. Check that if an address clause is allowed, a with clause
naming SYSTEM need not be given for the compilation unit
containing the address clause as long as such a clause applies
to the unit.

, Implementation Guideline- Check for address clauses in package
bodies, subprogram bodies, and subunits. Include a check for
generic unit bodies and subunits.

T4. Check that an address clause cannot be given for a named
number, an exception, a formal parameter of a subprogram,
entry, or generic unit, a generic formal object, a generic
subprogram, a generic package, a loop parameter, an object
designated by an access value, a slice, or a component of an
object.
Check that an address clause cannot be given for a library unit
or a generic unit.

p.. T5. Check that an address clause cannot be given for an
expanded name or for a name declared by a renaming declaration.Implementation Guideline: Include renamings of objects,

subprograms, packages, tasks, and entries.

T6. Check that an address clause cannot be given:
- in a package specification for an object, a package,

etc., declared in an inner package specification;
in a package or task specification, for an object,I 77

a package, etc., declared in an enclosing package
specification or a declarative part;

- in a package body for an object, package, etc.
declared in the corresponding package specification;
after the occurrence of a body in a declarative part.
Implementation Guideline: In particular, check for a

subprogram body that also acts as the declaration of
the subprogram.

T7. Check that an address clause cannot be given for
subprogram if more than one subprogram with the same name is
declared explicitly in the same package specification or
declarative part.

*[Implementation Guideline: Include a generic instantiation and
*a renaming declaration as well as a subprogram declaration.

Check that if an address clause can be given for a subprogram,
it can be given when the subprogram is overloaded by:

- a subprogram declared in an outer declarative region
or library package,

- an entry declaration (when the subprogram is declared
in the task body),

* - an implicitly declared derived subprogram.

T8. Check that the expression in an address clause must be a
simple expression.

TIl. Check whether an address clause can be given for an object
declared in a declarative part.
Implementation Guideline: Use a variable and constant having
the following types: enumeration, integer, floating point,
fixed point, array, record, access, private, limited private,
and task.
Implementation Guideline: Include a check for declarative
parts of subprograms, blocks, and package bodies.

T12. Repeat TIl for generic units.

T13. Check whether an address clause can be given for an object
declared in a package specification.

*Implementation Guideline: Use a variable and a constant having
the following type: enumeration, integer, floating point, fixed
point, array, record, access, private, limited private, and
task.
Implementation Guideline: Include a check that the address

- clause can be given in the private part for an object declared
in the visible part.

T14. Repeat T13 for generic packages.

T21. Check whether an address clause can be given for a
subprogram declared in a declarative part by a subprogram
declaration or a generic instantiation.

78

Implementation Guideline: Check for a declarative part of a
block, a package body, a subprogram, and a task body.

T22. Check whether an address clirjse can be given for a
subprogram declared in a package a subprogram declaration or a
generic Instantiation.
Implementation Guideline: Include a check that the clause can
be given in the private part for a subprogram declared in the
visible part.

T31. Check whether an address clause can be given for a package
declared in a declarative part by a package declaration or a
generic instantlation.
Implementation Guideline: Check for a declarative part of a

.r. block, package body, subprogram, and task body.

T32. Check whether an address clause can be given for a package
declared in a package by a package declaration or generic
instantiation.
Implementation Guideline: Include a check that the clause can
be given on the private part for package declared in the
visible part.

T41. Check whether an address clause can be given for a task
type or a single task declared in a declarative part.
Implementation Guideline: Check for a declarative part of a
block, a package body, a subprogram, and a task body.

T42. Check whether an address clause can be given for a task
-,, type or a single task declared in a package

Implementation Guideline: Include a check that the clause can
be given in the private part for a task or a task type declared
in the visible part.

Interrupts Test Objectives

T1. Check that an address clause cannot be specified for an
entry that has a parameter of mode out or mode in out.

T2. Check that an address clause cannot be specified for an
entry family.

T3. Check that the name in an address clause for an entry
cannot be an expanded name.

T4. Check that an address clause for an entry cannot be given
within the declarative part of the task body.

. Tll. Check that if an implementation supports address clauses
for entries, such a clause can be given for an entry of a task

*. type as well as for an entry of a single task.
'7

7g

Appendix B: Validation Test Software

This Appendix contains a sample of the validation tests
developed in this thesis. A machine readable version of the
software is available from the Air Force Institute of Technology,
Department of Mathematics and Computer Science (ENC), WPAFB OH
45433.

Validation Test Naming Convention
The name associated with the validation tests conforms to

the naming convention for the tests in the ACVC test suite. The
C![test names will be of the form NAME.ADA, with NAME containing up

to nine characters defined below:

Character Position Description

1 Class of test (A,B,C,D,E,L)
2 AIO chapter number (Hex)
3 AIG section number (Hex)
4 AIO subsection number or

letter
5,6 AIQ test objective number
7 Test sequence letter (A-Z)
8 Compilation sequence digit

(0-9) (Not required)
9 'M' indicates main program

(for several compilation
units) (Wilson, 1987b).

By my using this convention, the tests are more likely to be

understood and accepted by those familiar with the conventions

of the ACVC test suite. This convention thus helps to satisfy

the requirement that the tests clearly identify their

objectives. The name of the test does this by referring to the

test objectives in the ACVC Implementers' Guide (Goodenough,

1986) and Appendix A to this thesis.

Enumeration Representation Clauses Test Names

BD3001A.ADA
BD3002A.ADA
BD3004A.ADA
BD3012A.ADA

80

S"

Enumeration Representation Clauses Sample Test:

-- BD----A

-- Check that integer codes must be given for each enumeration
-- literal cf the type

Check that nonstatic integer codes are not allowed (in
-givi.-. Integer codes to each enumeration literal of the

"- A-th-: 'a t Dan Joyce
V - er s -- ,' , - i

- Date " Jun 87
--

n,-cedzr BL3312A(one :string;
two: string;
three: string;
four,: string;

" five: string) is

e :;--e enrm_ type is (al ,a2,a3,a4 ,a 5);
type erumtypel is (al,a2,a3,a4,a5):
tyre enr-w._ type2 is (al,a2,a3,a4,a5);

"fr ex.rm type use (1 ,2,3,4); -- Illegal, too few
-- integer codes

or erum_typel use (1,2,3,4,5,6); -- Illegal, too many
-- integer codes

for er.un_type2 use (one length,two'length,three'length,
four' length, five' length);

-- Illegal use of nonstatic
-- Universal integer for Choices

. '$er. BD3'1)1A:

Address Clause and Interrupts Test Names:

BDSO01A. ADA

0. BDS002A.ADA BDSOO2B.ADA BD5002C.ADA BD5002D.ADA
BD5002E.ADA

AD5003A.ADA AD5003B.ADA AD5003C.ADA AD5003D.ADA
'S. AD5003E.ADA

_ BDSOO4A.ADA BD5004B.ADA BD5004C.ADA

81

0@

.

BD5005A.ADA BD5005B.ADA

BD5006A.ADA BD5006B.ADA BD5006C.ADA BD5006D.ADA
BD5006E.ADA

AD5007A.ADA AD5007B.ADA AD5007C.ADA BD5007A.ADA

BD5008A. ADA

AD5011A.ADA AD5011B.ADA AD5O11C.ADA AD5O11D.ADA
AD50IIE-ADA AD5011F.ADA AD5011O.ADA AD5011H.ADA
AD5011I.ADA AD5011J.ADA AD5011K.ADA AD5011L.ADA
AtDhO11M.ADA AD5011N.ADA AD5011O.ADA AD5011P.ADA
AD5011Q.ADA AD5011R.ADA AD5011S.ADA AD5O11T.ADA

AD5012A.ADA AD5012B.ADA AD5012C.ADA AD5012D.ADA
AD50102E.ADA AD5012F.ADA AD50120.ADA AD5012H.ADA
AD50121.ADA AD5012J.ADA AD5012K.ADA AD5012L.ADA
AD5012M.ADA AD5012N.ADA AD5012O.ADA AD5012P.ADA
AD5012Q.ADA AD5012R.ADA AD5012S.ADA AD5012T.ADA

*AD5013A.ADA AD5013B.ADA AD5OI3C.ADA AD5013D.ADA
AD5013E.ADA AD5013F.ADA AD50130-ADA AD5013H.ADA
AD50131.ADA AD5013J.ADA AD5013X.ADA AD5O13L.ADA
AD5013M.ADA AD5013N.ADA AD5013O.ADA AD5013P.ADA
AD5013Q.ADA AD5O13R.ADA AD5013S.ADA AD5013T.ADA

AD5014A.ADA AD5014B.ADA AD5014C.ADA AD5014D.ADA
-,AD5014E.ADA AD5014F.ADA AD5014G.ADA AD5014H.ADA

AD5014I.ADA AD5014J.ADA AD5014K.ADA AD5014L.ADA
AD5014M.ADA AD5014N.ADA AD50140.ADA AD5014P.ADA

4AD5014Q.ADA AD5014R.ADA AD5014S.ADA AD5014T.ADA

AD5021A.ADA AD5022A.ADA

AD5C31A.ADA AD5032A.ADA

AD5041A.ADA AD5042A.ADA

BD51O1A. ADA BD5101B.ADA

'410 A. D

BD51O2A. ADA

BD51O4A. ADA

AD51 1 A.ADA

82

Address Clause Sample Tests

-- BD5001A
-- Check that the express:: r-. an address clause must have
-- the type SYSTEMADDRESS
-- Check illegal address . r. to an object

-- Date: 2" July 87

-- Version-
-- Author: Capt Dan Joyce

with system;
prccedure BD=*C iAis

subtype bad addresstype ".teger
bad address! bad _address ,pe 0:
bad _ address2 pos:tive :m
bad_addreszl integer
bad _address4 natural ' -
bad _address5 float : C

objectl : intego-:
for objecti use at bad adhegil

Address must be
- :'type SYSTEM.ADDRESS

object2 : inge~r;
for object'2 use at bad_ adinesa'2'

- r rrLr,. Address must be
- type SYSTEM.ADDRESS

object3 : integer;
for object3 use at bad address3:

-- Error. Address must be
-- of type SYSTEM.ADDRESS

object4 : integer;
for object4 use at badaddress4;

-- Error. Address must be
-- of type SYSTEM.ADDRESS

object5 : integer;
for object5 use at bad _address5;

-- Error. Address must be

-- of type SYSTEM.ADDRESS
begin

null;
end BDBO01A;

83

€44

* r'-,- r r r -W I W US 7w.*

-- AD5OI1A
-- Check whether an address clause can be given for an object
-- declared in a declarative part.
-- This checks for enumeration type variables declared in the
-- declarative parts of subprograms, blocks, and package
- - bodies.

-- Date- 24 July 87
-- Version' 1.4
-- Authc, r- Capt Dan Joyce

with SYSTEM:
with ADDRESS PACKAGE: use ADDRESS PACKAGE:
with REPORT: use REPORT;
procedure AD5011A is

be g r;

TEST("AD5O11A ,"Check whether an address clause can be given &
for enumeration type variables declared in the &
"declarative parts of subprograms, blocks and package &
"bodies.)

BLOCK1: declare

-- This tests the declarative part of subprograms
procedure procl is

type enum_ type is (red, blue, green);
enum_ objl: enum_type:
for enum_ objl use at object address-'

begin -- procl
null:

end procl;

begin -- BLOCKI
null:

end BLOCK.>

BLOCK2: declare

-- This tests the declarative part of blocks
type enum_type is (red, blue, green);

enumobj i: enum type;
for enum-obJl use at objectaddress2;

84

• I

begin -- BLOCK2
null;

end BLOCR2;

BLOCK3: declare

-- This tests the declarative part of package bodies
package PKG is
end PK;

package body PKO is
type enum_type is (red, blue, green);

enum_ obj I: enum_type;
for enurn objI use at object address3;

end PRG;

begin -- BLOCK
null

end BLOCK3;

RESULT;

end AD5OllA;

Interrupts Sample Tests

-- BDS102A
-- Check that an address clause cannot be specified for

A.. -- an entry family.

-- Date: 8 Sep 87
-- Version: 1.2
-- Author- Capt Dan Joyce

with system;
with ADDRESSPACKAGE; use ADDRESSPACKAGE;
package BDS1O2A is

type interrupt_level is range 0 .. 2;

I task taskl is
* entry familyentryl (interrupt_level);

for family entryl use at entryaddress5.
-- Illegal. Can't give

-- address clatse
-- family entry

end taskl;

end BD5l02A;

.1 ' >''' ':" '' :" a. s- , -- . .. ,

A189 554 VALIDATING AND EVALUATING
ADA'S (TRADE MARK)REPRESENTATION CLAUSES AND I (U) AIR FORCE INST OF

TECH NRIGHT-PATTERSON AFB OH SCHOOL OF ENGI
UNCLASSIFIED D 0 JOYCE DEC 87 AFIT/GCS/NA/87D-2 F/G 12/5

EEEEllEEllli
EhhEEEEEEmhohE

L.6
U.0

1 i-2f 11 1.4 111 b

ME '~

0l) 4R

package body BD5102A is

task body task] is
begin

loop
select

accept familyentryl(0);
o r
accept familyentryl(l);

or
accept familyentryl(2);

end select;
end loop;

end taskl;
end BD5102A;

-- ABIllA
-- Check that if an implementation supports address clauses
-- for entries, such a clause can be given for an entry of a
-- task type as well as for an entry of a single task.

-- Date: 9 Sep 87
-- Version: 1.5
-- Author: Capt Dan Joyce

with system;
with ADDRESSPACKAGE; use ADDRESSPACKAGE;
package AD5111APKG is

task type tasktypel is
entry entryl;
for entryl use at entry address5;

end tasktypel;
-- Legal. Should be accepted
-- if implementation supports
-- entry addresses.

taskobjectl : tasktypel;

task task2 is
entry entry2;
for entry2 use at entry-address6;

• end task2;
en k-- Legal. Should be accepted

-- if implementation supports
-- entry addresses.

end AD5111APKG;

86

package body AD5111A PKG is
task body tasktypel is
begin

accept entryl;
end task-typel;

task body task2 is
begin

accept entry2;
end task2;

end AD5111A_PKQ);

with AD5111A_PKG3 use AD5111A_PKG;
with REPORT; use REPORT;
procedure AD5111A is

begin

-The next two task calls allow the tasks to terminate
-and therefore the main task AD5111A can terminate

* task2.entry2;

task-objectl1.entry 1;

TEST(-AD5111A -,Check that an address clause can be given *&
entries for a task type as well as a single task)

RESULT;
end AD5111A;

87

Appendix C: Performance Evaluation Test Software

I used the following PIWG programs to support the

benchmarks developed for Chapter 13 features: A000001,

containing the package DURATIONIO for reporting timing

results; A000012, containing the CPUTIMECLOCK for DEC VAX

computers; A000021 and A000022, containing the specification

and body of the REMOTEGLOBAL optimization control package. I

also modified the PIWG package A000050 and the procedures

A000052, A000053, A000054, and A000055 to return CPU times from

in the format I needed in this benchmark. The source for this

package and these modified procedures is included in this

appendix.

The machine readable code for these modules is currently

available on the SIMTEL20.ARPA Ada Software repository, in the

directory PD:<PIW(3.ADA).

The performance evaluation tests for the prototype feature

(enumeration representation clauses) and a sample of the tests

for interrupt response time is given below. The machine

readable form of these tests is available from the Air Force

Institute of Technology, Department of Mathematics and Computer

Science (ENC) , WPAFB OH 45433.

A13 3 3C Source Code

This benchmark was designed as a prototype to learn more

about benchmarking Chapter 13 features. As a test for the

..

efficiency of a compiler's implementation of enumeration

representation clauses it is not complete because it tests only

the successor ('SUCC) attribute. A complete benchmark would

have to include tests for a wide range of enumeration objects

with all of the enumeration type attributes and operations.

-- Test Name: AIZ3_3_3C
-- Author: Capt Dan Joyce
-- Date: 8 Jun 1987
-- Test Description: This test is designed to determine the
-- processing overhead associated with enumeration types
-- whose representations have been modified with an
-- enumeration representation clause from Chapter 13

with A000050; use A000050:
with REMOTE-GLOBAL ; use REMOTE GLOBAL ; --control optimization

procedure A13_ 3 3C Is -- main procedure to execute

type enumtype is (a00.aOl,a02,a03,a04,a05,a06,a07,a08,a09,
al0,all,al2,a13,al4,al5,al6,al7,al8,alg,
a20,a2l,a22,a23,a24,a25,a26,a27 ,a28,a2g,
a30,a31 ,a32,a33,a34,a35,a36,a37,a38,a39,
a40,a4l.,&42,a43,&44,&45,a46,a47,a4B,a4g,
£50 ,a51, a52 * 53 ,a54 * 55,*a56 ,a57 ,a58 ,a59,
a60,a61,a62,a63,a64,a65,a66,a67,a68,a6g,
a70.a7l,a72,a73,a74,a75,a76,a77,a78,a79,
a80 ,a8 1,a82 , 83 ,a84 ,a85, £86 ,a87. £88 ,a89,
agO,agl,ag2,a93,a94,ag5,ag6,ag7,ag8,aQQ,
a 100);

type enumntype2 is (aOO,aOl,a02.a03,a04,a05,a06,a07,a08,aOg,
£10 ,all1,a12 ,a13 ,a14 ,a15,a16,al7,alB ,alg,
a20,a2l,a22,a23,&24,a25,a28,a27,a28,a2g,
a30 ,a31,a£32 ,a33,a34,a35 ,a36 ,a37,a 38 ,a39,
a40,a4l,&42,a43,a44,&45,a46,a47,&48,a4g,
a50.a5l,a52,a53,a54,a55.a56.a57,a58,a59,
a60,a61,a62,a63,a64,a65,a66,a67,a68,a6g,
a70 ,a71 , 72 * 73, 74 ,£75 ,a76, £77 ,a78 ,a79,
80, a8 1, a82 ,£83, .84 ,a85 ,a86 ,a87 ,£88 ,a89,
.90, .91, 92 ,ag3 , 94,ag.5 £96 ,ag7,g8,ag9,
a 100);

for enum-type2 use (0,10,20.30,40,50,60,70,80,90,
100,110,120,130,140,150,160,170,180,190,
200,210,220,230,240,250,260,270,280,290,
300,310,320.330,340,350,380,370,380,390,
400,410,420,430,440,450,460,470,480,490,

89

500,510,520,530,*540,550,560,570,580,590,
600.6 10.620.630,840.650.680.670,680,690,
700.710,720,730,740,750,760,770,780,790,
800,8 10,820,830,840,850,860,870,880,890,
900,910,920,930,940,950,960,970,980,990,
1000);

enum..object enum type aOO;
enumobject2 enumtype2 aOO;

begin
A000052A;

-Control loop

for J in 1 .. 10 loop
GLOBAL !=0;
enum-object :=enum..type'first;
for INSIDELOOP in 1 . . 100 loop
GLOBAL GLOBAL + A_ONE ; -typical control loop is
REMOTE ; -these two statements
enum-object :=enum.,type 'succ(enum-object);

0 end ioop
% end loop

A000053A;
A000054A;

-Test loop

for J in 1 . . 10 loop
GLOBAL :=0;
enum-object2 :=enum-type2'first;
for INSIDELOOP in 1 . . 100 loop
GLOBAL GLOBAL + A_ONE;
REMOTE
enumobject2 :=enumtype2'aucc(enumobJect2);

end ioop
end loop

a000055A;
end A13 3 3C;

A000050 Source Code
-- A000050
-This is a package that contains modified versions of A000051
-thru A000054. These procedures save the wall and c'zu time
-in variables in the A000050 package rather than writi~ng them
-to a file each time a measurement is taken. I am concerned
-that the overhead for the I/O is distorting the timing
-measurements. Therefore, the data will be written at the
-end, after all measurements have been taken

90

0*r

-- USAGE A000052A (1)
- - control procedure
-- A000053A (2)
-- A000054A (3)
- - test procedure
-- A000055A (4)
-- RESULT
-- ((4) - (3)) - ((2) - (1)) is the measurement

-- The second expression takes out the time to make the
-- measurement. As a check, (3) - (2) should be close to
-- (2) - (1)
with CPUTIME CLOCK ; -- various choices on tape
with CALENDAR -- used for WALL clock times
with TEXTIO for printing times
with DURATION_IO ; -- for printing times

package A000050 is
CPUSECONDSSTARTCONTROL DURATION;
CPUSECONDSSTOPCONTROL DURATION;
CPUSECONDSSTARTTEST DURATION;
CPUSECONDSSTOPTEST DURATION;
CPUSECONDSDIFFCONTROL DURATION;
CPUSECONDSDIFFTEST DURATION;
CPUSECONDSDIFF DURATION;

WALLSECONDSSTARTCONTROL DURATION;
WALLSECONDSSTOPCONTROL DURATION;
WALLSECONDSSTARTTEST DURATION;
WALLSECONDSSTOPTEST DURATION;
WALLSECONDSDIFFCONTROL DURATION;
WALLSECONDSDIFFTEST DURATION;
WALLSECONDSDIFF DURATION;

procedure A000052A;
procedure A000053A;
procedure A000054A:
procedure A000055A;
end A000050;

package body A000050 is

procedure A000052A is

begin
CPUSECONDSSTARTCONTROL CPUTIME_CLOCK;
WALL SECONDS STARTCONTROL

CALENDAR.SECONDS(CALENDAR.CLOCK);
end A000052A;

91

procedure A000053A is

begin
CPU-SECONDSZITOPCONTROL := CPUTIMECLOCK;
WALLSECONDSSTOP_CONTROL :=

CALENDAR.SECONDS(CALENDAR.CLOCK);
end A000053A;

procedure AO00054A is

begin
CPUSECONDSSTARTTEST : CPUTIMECLOCK;
WALLSECONDSSTARTTEST := CALENDAR.SECONDS(CALENDAR.CLOCK);

end A000054A;

procedure A000055A is

MY_FILE :TEXTIO.FILETYPE;
begin
CPUSECONDS STOP TEST : CPUTIME CLOCK;
WALLSECONDSSTOP_TEST : CALENDAR.SECONDS(CALENDAR.CLOCK);

I

CPUSECONDSDIFFTEST CPUSECONDSSTOPTEST -
CPU SECONDS START TEST;

CPUSECONDSDIFFCONTROL := CPUSECONDSSTOPCONTROL -
CPUSECONDSSTARTCONTROL;

CPUSECONDSDIFF :- CPUSECONDSDIFFTEST -
CPUSECONDSDIFFCONTROL;

WALLSECONDSDIFFTEST : WALLSECONDSSTOPTEST -
WALLSECONDSSTART_TEST;

WALLSECONDSDIFFCONTROL := WALLSECONDSSTOPCONTROL -
WALL-SECONDSSTART CONTROL;

WALLSECONDSDIFF := WALLSECONDSDIFFTEST -

WALLSECONDSDIFFCONTROL;

TEXTIO.CREATE(MYFILE, TEXTIO.OUT_FILE, "A000050D');

TEXT_ IO.NEWLINE(MY FILE);
TEXT IO.PUT(MYFILE, CPU SECONDS DIFF CONTROL:);

DURATION_ IO.PUT(MYFILECPUSECONDSDIFFCONTROL);
TEXT_ IO.NEWLINE(MYFILE,1);
TEXT_ IO.PUT(MYFILE, CPU SECONDS DIFF TEST: .

DURATION IO.PUT(MYFILE,CPUSECONDSDIFFTEST);
TEXT_ IO.NEWLINE(MYFILE,1);
TEXT IO.PUT(MYFILE, - CPU SECONDS DIFFERENCE: "

DURATIONIO.PUT(MYFILE,CPU SECONDSDIFF);

TEXT IO.NEWLINE(MYFILE,2);
TEXT_ IO.PUT(MYFILE, -WALL SECONDS DIFF CONTROL:);

DURATION _IO.PUT(MY_FILEWALLSECONDS DIFFCONTROL);
TEXTIO.NEWLINE(MYFILE,I);

92

6P

TEXT_IO.PUT(MYFILE, *WALL SECONDS DIFF TEST:
DURATION 10.PUT(MYFILEWALL_SECONDSDIFFTEST);
TEXTIO.NEW_LINE(MYFILE,1);
TEXTIO.PUT(MY_FILE, -WALL SECONDS DIFFERENCE:
DURATIONIO.PUT(MY_FILEWALLSECONDSDIFF);
TEXT_IO.CLOSE(MYFILE);

end A000055A;
end A000050;

Sample Benchmark for Interrupt Delay Time

--

-- INT_TEST4

-- This is a benchmark that will measure the interrupt delay
-- time associated with a task as an interrupt handler.
-- Task INTHANDLE_2_TO_14 has an entry tied to interrupt 3
-- with an address clause. The accept block of this task
-- should be entered whenever interrupt 3 is raised.
-- This benchmark will raise MIL-STD-1750A interrupt 3
-- (a floating point overflow) by causing a floating point
-- overflow in the main procedure.
-- This benchmark calls RESETINTVECTORS_7_AND_9 and
-- GET_ALL_TIMES in package TIME_PACKAGE_1750A to set up and
-- retrieve precise CPU time measurements that are not
-- available with package CALENDAR.
-- This benchmark has I TASK with 10 entries, each tied to
-- a 1750a interrupt.
-- Author: Capt Dan Joyce
-- Date: 27 Sept 87 1325
-- Version: 2.4

package GLOBAL_INTERRUPT_MAKER4 is
function FLOATRETURN return float;

end GLOBALINTERRUPTMAKER4;

with TIMEPACKAGE_175OA; use TIME_PACKAGE_1750A;
with GLOBALINTERRUPT_MAKER4;
with TEXT_IO; use TEXT_IO;
procedure INT_TEST4 is

package time_1750a_io i new FLOAT_IO(time_1750a);
use time_1750a_io;

floatobject : FLOAT " 0.500000 * 2.0 ** 127;

max-values : constant integer := 100;
type TIME_ARRAY_TYPE is array (l..maxvalues) of TIME_1750A;

-- Variables for statistical calculations
-- The address clause is used so those memory

93

-locations may be examined on the 1750A to
verify the accuracy of the values reported

mean :TIME_ 1750A :=0.0;
for mean use at 16*6000*;

variance TIME_ 1750A 0.0.
for variance use at 16*6004#;

sum-del _tim TIME-1750A :=0.0;
for sum-del tim use at 16*6010*;

sum-del _tim2 :TIME-1750A :=0.0;
for sum-del _tim2 use at 16*6014*;

-- Time collection Variables

before-interrupt T1ME-ARRAYTYPE (others => 0.0);
after_-interrupt TIME-ARRAY TYPE (others => 0.0);

clock-bias-start TIMEARRAYTYPE (others => 0.0);
clock-biassatop TIME..ARRAYTYPE (others => 0.0);

int delay TIME -ARRAY_-TYPE (others => 0.0);
for mnt-delay use at 16#7000#;

start-benchmark TIME-1750A :=0.0;
for start-benchmark use at 16*6020*;

stop benchmark TIME 1750A :=0.0;
for stop-benchmark use at 16*6024*;

main_ timera return TIME-1750A 0.0;
main.dumznyb return TIME_ 1750A 0.0;

task_ timera return TIME-1750A 0.0;
pragma SHARED(task_ timera return);
task dummya return TIME1750A :=0.0;
pragma SHARED(task dummya-return);
task dummyb return :TIME-1750A :=0.0;
pragma SHARED(task dummyb return);

-- -

-- Interrupt Handling Task Specifications

0task INT HANDLE_2 TO 14 is
pragma PRIORITY(3);
entry interrupt_2;
for interrupt_2 use at 2;
entry interrupt_3;
for interrupt_3 use at 3;

94

001l ilflo e

entry interrupt_4;
for interrupt_4 use at 4;
entry interrupt_6;
for interzupt8d use at 6;
entry interrupt_8;
for interrupt_8 use at 8;
entry interrupt_10;
for interrupt_10 use at 10;
entry interrupt~ll;
for interruptj1l use at 11;
entry interrupt_ 12;
for interrupt_12 use at 12;
entry interrupt_13;
for interrupt_13 use at 13;
entry interrupt_ 14;
for interrupt_14 use at 14;

end INTHANDLE_2_TO_ 14;

-- Interrupt Handling Task Bodies

-- This is the task that will handle the overflow -

task body INT_HANDLE2TO_14 is
bef'in

loop
select

accept interrupt_2 do
V getal ltimes (task dummya return,

taskdummybreturn);
put line(Uin inttrrupt_2 accept');

end interrupt_2;
or
accept interrupt_3 do

* - - This is the accept that handles the -

-- floating point overflow -

geta1 _times (task timera return,
taakdummybreturn);

end interrupt_3;
or

accept interrupt_4 do
4 get..all..times (taskdummyareturn,

task dummyb..y~turn);
putline(*in interrupt_4 accept);

end interrupt_4;
or

accept interrupt_8 do
getal ltimes (taukdummya return,

taskdummyb return);

05

put.line("in interrupt_6 accept*);
end interrupt_6;

or
accept interrupt_8 do

get..all _times(task_dummyareturn,
task_dummyb..yeturn);

putjline(*in interrupt_8 accept*);
end interrupt_8:

or
accept interrupt_ 10 do

get all _times(taskdummya return,
task.dumrnyb return);

putline(*in interrupt_ 10 accept');
end interruptl10;

or
accept interrupt.) do
getall _times(task dummya return,

task_dummyb return);
put line("in interrupt_ 11 accept");

end interrupt 11;
or

* accept interrupt_ 12 do
get-all _times(task-dummyareturn,

task -dummyb return);
put~line("in interrupt_ 12 accept");

end interrupt_12;
or

accept interrupt_ 13 do
get~a11 _times(task_dummya..return.

task_dummyb return);
put line(*in interrupt_ 13 accept');

end interrupt_13;
or

accept interrupt_ 14 do
getal 1 times (task..dummya return,

task dummyb return);
put.)ine(*in interrupt_ 14 accept*);

end interrupt..j4;
end select;

end loop;
end INTHANDLE_ 2_TO_14:

-This procedure calculates the mean and variance
-for the interrupt delay time

procedure STATISTICSAND -RESULTS is
elapsed..bench-time time_ 1750a 0.0;
n .time_ 1750a 0.0;

begin
mean 0.0;
variance 0.0;
sum del-tim 0.0;

96

sum-del-_tim2 0.0;

for i in 1 . . max_values loop

-The bias of the GETALLTIMES call is
-added back in

int-delay~i) :=after_ interrupt(i) -

(before~jnterrupt(i) + clockbiasstop(1)-

clock_bias_start(i));
sum-del-_tim sum-del-_tim + mnt-delay~i);
sum-del-_tim2 sum-del-_tim2 +

(int_delay(i) * int_delay(i));
end loop;

n :=time_ 1750a(max_values);
mean :=sum-del _tim /n;
variance :=(sum-del tim2 - (n*mean*mean)) /(n -1.0)

* new_ line;
put('start)
put(start _benchmark);

*put(" stop ')
put(stop benchmark);
put(' elapsed time
elapsed_ bench_ time stop benchmark -start_benchmark;

put~elapsed bench_ time);

new_ line;

put(" n

put(' mean
put(mean);

put(" var
put (variance);
new_line;

* end STATISTICSAND_RESULTS;

begin -- INT_TEST4

RESET_ INT_VECTORS_7_AND_9;
GETALLTIMES(start-benchmark,

* main_dummyb return);

for i in 1 .. max-_values loop

-The first 2 clock calls are used to factor out
-the time a GET-_ALL-_TIMES call will take

4 97

GETALLTIMES(clockbiasstart(i),
maindummybreturn);

GETALLTIMES(clockbias stop(i),
maindummybreturn);

- ETALLTIMES(beforeinterrupt(i),
maindummybreturn);

floatobject =
floatobject + GLOBALINTERRUPTMAKER4.FLOATRETURN;

-- This will cause an overflow

after interrupt(i) := task timera return;

end loop;

GETALLTIMES(stopbenchmark,
main_dummyb return);

abort INT HANDLE_2_TO 14;
STATISTICSANDRESULTS;

* end INTTEST4;

package body GLOBALINTERRUPTMAKER4 is
function FLOATRETURN return float is
begin

return 0.50000 * 2.0 ** 127;
end FLOAT_RETURN;

end GLOBALINTERRUPT_MAKER4;

98

1111 1 1
48NYMbW

Appendix D: Validation Test Results

This appendix contains the results of the validation tests

that were run on the three compilers in this thesis. A

compiler either passes the test, fails the test, or a test is

ruled inapplicable because the compiler does not support the

feature in the manner it is tested, indicated by N/A.

Enumeration Representation Clauses

Test Compiler A

BD3001A Passed
BD3002A Passed
BD3004A Passed
BD3012A Passed

Address Clauses and Interrupts

Test Compiler A Compiler B Compiler C

BD5001A Passed Passed Passed

BD5002A Passed Passed Passed
BD5002B N/A N/A N/A
BD5002C N/A N/A N/A
BD5002D N/A N/A N/A
BD5002E N/A N/A N/A

AD5003A Passed Passed Passed
AD5003B Passed Passed Passed
AD5003C Passed Passed Passed
AD5003D Passed Passed Passed
AD5003E Passed Passed Passed

BD5004A Passed Passed Passed
BD5004B Passed Passed Passed
BD5004C Passed Passed Passed

BD5005A Passed Passed Passed
BD5005B Passed Passed Passed

99

Test Compiler A Compiler B Compiler C

BD5006A Passed Passed Passed
BD5006B Passed Passed Passed
BD5006C Passed Passed Passed
BD5006D Passed Passed Passed
BD5006E Passed Passed Passed

AD5007A N/A N/A N/A
AD5007B N/A N/A N/A
AD5007C N/A N/A N/A

BD5007A N/A N/A N/A

BD5008A Passed Passed Passed

AD5O11A Passed Passed Passed
AD5011B Passed Passed Passed
AD5011C Passed Passed Passed
AD5011D Passed Passed Passed
AD5O11E Passed Passed Passed

AD5011F Passed Passed Passed
AD5O11G Passed Passed Passed
AD5011H Passed Passed Passed
AD50111 Passed Passed Passed
AD5O1IIJ Passed Passed Passed

AD5O11K N/A N/A N/A
AD5O11L N/A N/A N/A
AD5011M N/A N/A N/A
AD5011N N/A N/A N/A
AD50110 N/A N/A N/A

AD5O11- N/A N/A N/A
AD5011Q N/A N/A N/A

AD5O12A Passed Passed Passed
AD5012B Passed Passed Passed
AD5012C Passed Passed Passed
AD5012D Passed Passed Passed
AD5012E Passed Passed Passed

AD5012F Passed Passed Passed
AD5012Q Passed Passed Passed
AD5012H Passed Passed Passed
ADS0121 Passed Passed Passed
AD5012J Passed Passed Passed

AD5012K N/A N/A N/A
AD5012L N/A N/A N/A
AD5012M N/A N/A N/A

100

Test Compiler A Compiler B Compiler C

S.AD5012N N/A N/A N/A
AD50120 N/A N/A N/A

AD5012P N/A N/A N/A
AD5012Q N/A N/A N/A

I.ADS013A Passed Passed Passed
AD5013B Passed Passed Passed
AD5013C Passed Passed Passed
AD5013D Passed Passed Passed
AD5013E Passed Passed Passed

AD5013F Passed Passed Passed
AD50130 Passed Passed Passed
AD5013H Passed Passed Passed
AD5013I Passed Passed Passed
AD5013J Passed Passed Passed

AD5013K N/A N/A N/A
*AD5013L N/A N/A N/A

AD5013M NIA NIA N/A
AD5013N N/A N/A N/A
AD50130 N/A NIA N/A

AD5013P N/A N/A N/A
AD5013Q N/A N/A NIA
AD5013R N/A N/A N/A
ADS013S N/A N/A N/A

AD5014A Passed Passed Passed
ADS014B Passed Passed Passed
AD5014C Passed Passed Passed
AD5014D Passed Passed Passed
AD5014E Passed Passed Passed

AD5014F Passed Passed Passed
*AD50140 Passed Passed Passed

*AD5014H Passed Passed Passed
AD50141 Passed Passed Passed
AD5014J Passed Passed Passed

AD04KNAN/ /

AD5014L(N/A N/A N/A
AD5014M N/A N/A N/A

-AD50140 N/A N/A N/A

ADS014P N/A N/A N/A
KAD5014Q N/A N/A N/A

fAD5014R N/A N/A N/A
AD5014S N/A N/A N/A

a 101

Test Compiler A Compiler B Compiler C

AD01 I I /

AD5022A N/A N/A N/A

AD5031A N/A N/A N/A

AD5032A N/A N/A N/A

AD5041A N/A N/A N/A

AD5042A N/A N/A N/A

BD5101A N/A Nae N/A

BD5101B N/A Passed N/A

BD5102A N/A FAILED 5 NIA

BD5103A NIA Passed N/A

BD14 / Pse /

AD5111A N/A Passed N/A

Totals Compiler A Compiler B Compiler C

Passed 58 63 58

Failed 0 1 0

N/A 52 46 52

5This failed test was passed by a subsequent version of

p compiler B.

102

Appendix E: Performance Evaluation Test Results

Results of Prototype Benchmark

The results shown below are the differences in the control

and test loop execution times, in seconds, of the A13_3_3C

benchmark (test_looptime - control loop_time) ; they are

presented here as an example of the results obtained from this

benchmark. The numbers in square brackets index the trial

number of the first result in that row.

Chapter 4 describes how the test version of the benchmark

could be faster than the control version, generating the

* negative difference.

Compiler A Results

-0.0300 -0.0100 0.0200 0.0700 0.0400
0.0001 0.0099 0.0 -0.0601 -0.0100

[11) 0.0100 0.0200 -0.0200 0.0 -0.0100
0.0 -0.0001 -0.0200 0.0100 0.0200

(21) 0.0200 -0.0100 0.0200 0.0100 0.0990
-0.4800 -0.4600 -0.4700 -0.4401 -0.4200

(31) 0.0100 0.0 -0.0300 -0.0100 0.0
0.0200 0.0001 -0.0200 0.0199 -0.0200

(41] -0.0300 0.0 -0.0200 0.0 0.0990
0.0 0.0199 0.0100 0.0990 0.0

(51) -0.0099 -0.0700 -0.0100 0.0100 0.0300
-0.0400 0.0200 -0.0200 0.0100 -0.0100

(61] 0.0400 0.0099 0.0200 0.0 -0.0100
-0.0200 0.0200 0.0 -0.0100 0.0100

[71) -0.0100 0.0 0.0100 -0.0200 0.0100

Mean = -0.0264453 Seconds,
Standard Deviation 0.1186431 Seconds.

103

P

Appendix F: Detailed Description of Time Package 1750A

Introduction

This appendix describes the detailed development of the

TIMEPACKAGE_1750A, which contains three procedures used to

return the current elapsed time from the timer registers

available on the MIL-STD-1750A architecture. This appendix

explains how each of these procedures was designed, followed by

the assembly language and Ada source code for these

procedures. Much of the information found in this appendix is

extracted from MIL-STD-1750A (DoD,1982) -- the reader is

* directed to that document for further detail on interrupt

handling and assembly instructions for the MIL-STD-1750A

architecture.

A crucial link in the development of benchmarks to

measure interrupt response time was the development of a method

for precise, accurate measurement of the elapsed CPU time for

this operation. TIMEPACKAGE_1750A consists of three

functions: (1) an assembly language routine that resets and

redefines the interrupt service routines for MIL-STD-1750A

* interrupts, (2) an assembly routine to retrieve the current

value of the two MIL-STD-1750A timer registers and the number

of interrupts that have occurred, and (3) an Ada package that

* other Ada procedures can *with' to retrieve CPU times. Each of

these will be described in detail below.

104

Background

Among its general purpose registers, the MIL-STD-1750A has

two 16-bit registers known as Timer A and Timer B. When a

MIL-STD-1750A processor is started up, or reset, both Timer A

and Timer B are set to zero and are incremented every 10 and

100 microseconds, respectively, and count in the following

sequence:

000016, 0001 16, 7FFF 16 800016..... FFFF 16 000016,

0001 16.

Whenever the timers increment from FFFF16 to 0000 16 they each

generate a MIL-STD-1750A interrupt. Timer A generates

interrupt 7 and Timer b generates interrupt 9 (DoD, 1982:19).

The current elapsed time, then, may be calculated using the

following formulas:

El = [(I * 65,536) + T 1 * 10 / 1000000.0 secondsa a a

or,

El = (I * 65,536) + T b * 100 /1000000.0 seconds

where

El a Elapsed time (using Timer A)
~a

Elb = Elapsed time (using Timer B)

I
I b number of Timer A interruptsIa

'-I b - number of Timer B interrupts

T a current value of Timer A register* . a

U Tb = current value of Timer B register

Although both Timers should report similar results, with Timer

A having more precision, both timers were used in

TIME_PACKAGE_1750A as a check to ensure that the values being

105

returned were valid. In order to calculate the elapsed time,

TIMEPACKAGE_1750A must keep track of the number of times

interrupts 7 and 9 have occurred, retrieve the values of the

Timer A and B registers, and perform the conversion shown

above.

Interrupt Counting

In order to count the number of interrupts 7 and 9 that

occurred, I had to modify the interrupt linkage pointers for

those two interrupts. I wrote an assembly language routine

that is called RESETIV, which resets the service pointers for

* those interrupts.

Whenever an interrupt occurs, the current state of the CPU is

saved, and the CPU reads a series of three 16-bit words

starting at the memory location indicated by the value in the

Service Pointer. The first two words are loaded into the

Interrupt Mask and the Status Word, respectively. The third

word contains the new instruction counter, and is the first

instruction of the interrupt service routine. When RESETIV is

called, It resets the service pointer for interrupt 7 (or 9) to

another three words of memory, the third being the address of

the first instruction of the new interrupt 7 (or 9) service

routine declared in RESETIV. All this routine does is add one.4

to memory location 500 (or 501 for interrupt 9). These memory

locations are reserved for this use because two 16 bit integers

are declared in the TIMEPACKAGE_1750A and assigned this

address with an address clause.

106

%0

RESETIV is linked to the Ada procedure

RESETINTVECTORS_7_AND_9 with a pragma INTERFACE statement.

When a procedure calls RESETINTVECTORS_7_AND_9 then the

service pointers are reset and the interrupt service routines

defined in RESETIV start keeping the interrupt count.

The RESETIV source code is given below.

RESETIV Source Code

*

* RESETIV

* * Name: Reset Interrupt Vectors
* Description: This assembly language routine will reset the
* interrupt vectors for MIL-STD-1750A interrupts 7 and 9,
* which correspond to the timer A and timer B clocks
* resetting to 0000 (from FFFF) , or *wrapping around'. The
* Interrupt service routines provided in this program will
* increment a counter that keeps track of the number of
* interrupts. By returning the current value of the timers
* and the number of times they have wrapped around, one may
* determine the current elapsed time without calling a
* predefined [slower] system time routine, such as Ada's
* (tm) CALENDAR package.

* References:
* MIL-STD-1750A, (notice 1), 21 May 1982, U.S.

Printing Office. [Pages 19-21 explain interrupt pointers,
* service routines, etc.]

* * Author: Capt Dan Joyce (with much help from iLt Marc Pitarys)
* Date: 6 Sep 87
* Version: 1.4

EXPORT RESETIV
* MODULE RESETIV

RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5

107

.00

R6 EQU 6
R7 EQU 7
R8 EQU 8
Rg EQU 9
R1O EQU 10
R 1 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

JC 7,RESETIV ;BRANCH TO THE PROGRAM BEGIN
ORG 00500

TICKNTA DATAT 0000 ;TickntA & B count the number of times
TICKNTB DATAT 0000 ;TimerA & B have wrapped around (0000)

IVEC7 DATAT V7ISR
EVEN

IVECQ DATAT VgISR
4 EVEN

V71SR DATAT 0 ;New Int Mask: MASK ALL INTERRUPTS
DATAT 0 ;New Status Word
DATAT 17ISR ;New Instruction Counter
EVEN

VQ1SR DATAT 0 :New Int Mask- MASK ALL INTERRUPTS
DATAT 0 ;New Status Word
DATAT IgISR ;New Instruction Counter
EVEN

* INTERRUPT HANDLER FOR TIMER A

;IQW REST 100
EVEN

17ISR TAH ,Stop Timer A
TBH ,Stop Timer B
INCM 1,0500 ;INCREMENT THE CLOCK TICK COUNT
TAS ,Restart Timer A
TBS ,Restart Timer B
ENVBL ,RE-ENABLE INTERRUPTS
LSTI 0002E ;Reload old status

[2E + 0) - MK,
[2E + 1] - SW,
[2E + 2) - IC (RETURN)

-- -
INTERRUPT HANDLER FOR TIMER B
EVEN

I9ISR TAH ,Stop Timer A
TBH ,Stop Timer B
INCM 1,0501 :INCREMENT THE CLOCK TICK COUNT
TAS ,Restart Timer A
TES ,Restart Timer B

108

ENBL RE-ENABLE INTERRUPTS
LSTI 00032 ; Reload old status (see above)

RESETIV DSBL , Disable Interrupts
PSHM RO,R1 ; Save RO and RI
SR RO,RO : Set RO = 0
SM RO ; Clear Interrupt Mask
CLIR , CLEAR ANY PENDING INTERRUPTS.
TAH , Stop Timer A and B and Reset them
TBH ; Both to Zero

OTA RO
OTB RO

L R1,IVEC7 ;SET UP INTERRUPT VECTORS FOR TIMER A
ST Rl,0002F ;02F is Int Svc Ptr Addr for Int 7

L R1,IVEC9 ; SET UP INTERRUPT VECTORS FOR TIMERB
ST R1,00033 ; 033 is Int Svc Ptr Addr for Int 9

RCFR RO ;CLEAR THE FAULT REGISTER
S CLIR , Clear Pending Interrupts

ENBL • Enable Interrupts Any NEW ONES
LIM RO,05940; Reset the interrupt mask

SW RO
POPM RO,R1 ; Restore RO and Ri
URS R15
END

Returning the Interrupt Count and Timer Register Contents

The assembly language routine GETTIMERS is called from

the procedure GETALLTIMES in package TIMEPACKAGE 1750A and

* passes two longinteger (32-bit) objects as arguments. When

the GETTIMERS routine is entered, registers 3 and 4 contain

the addresses of the two values that the GETALLTIMES

procedure is expecting back. GET-TIMERS retrieves the

interrupt count for interrupt 7/9 from memory location 500/501

and stores this in the lower half of the 32 bit return

variable. This has the same effect as multiplying the

* interrupt count by 65,536. GETTIMERS then uses a

109

NIN

Ram p 1011I'l1

MIL-STD-1750A XIO instruction to retrieve the values of the

timer registers and stores these values in the upper half of

the return variables indicated by the addresses in registers 3

and 4.

Registers 3 and 4 were used in the assembly routine after

the TIMEPACKAGE_1750A was initially compiled and I found that

registers 3 and 4 were being used by the Ada procedure to pass

the return addresses of the output parameters to the assembly

routine. When writing assembly language routines that will be

called from Ada, one must first determine the registers the Ada

calling routine is using to pass parameters to the called

assembly language routine. GETTIMERS is linked to an Ada

procedure, also called GETTIMERS, using the pragma interface.

The assembly language source code for GETTIMERS is given

below.

GET TIMERS Source Code

* Name: GETTIMERS
* Author: Capt Dan Joyce
* Date: 31 Aug 87
* Version: 1.2
* Description: This is a 1750A assembly language routine

, * designed to return the values of the timer A and Timer B
* clocks to a predefined location in memory. This routine
* must be used with the TIME PACKAGE. The timers will be
* loaded in memory locations identified in register 3 and 4:
* TimerA > [R3,R3+1]
* TimerB > [R4,R4+1]
* The value of the timer is loaded at the upper half of the
* double word (higher memory) The lower half will contain

the number of interrupts that have occurred, so the entire

32 bit word will contain the total number of ticks. For
example, assume that 3 interrupts have taken place onJ~a * timer A, and the current value of the timer A register is

110

01

'* 25 (hex). The value for [R3,R3+1] will be (in hex)

* 00030025.
• The number of interrupts will be updated by modified
* Interrupt service routines for interrupt 7 (Timer A) and
• interrupt 9 (Timer B) in the assembly routine RESETIV,

% which is tied to the Ada procedure
* RESET_ INTVECTORS 7 AND_9 with a pragma interface in
* TIMEPACKAGE_1750A. The number of interrupts must be

N . * stored at location 500 (timer A) and 501 (hex) for Timer
* B. See the Source for RESETIV.ASM.
*

* This must be called using pragma interface:

• Ada equivalent: procedure get timers(timer a ret,
•. timer b ret);

MODULE GET TIMERS
EXPORT GETTIMERS

RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R12 EQU 12
R14 EQU 14
R15 EQU 15

GET-TIMERS EQU
DSBL • Disable interrupts so clock

Can't wrap around during
routine

PSHM RO,R14 ; Save Registers RO,RI
XORR RO,RO ; Clear RO

L R2,0500 ; Load * Timer A intpts
V STBX R12,R3 ; Store contents of R2 at.1P' [R3+0) (R12-12 = RO)

L R2,0501 ; Load * Timer B intpts
STBX R12,R4 ; Store contents of R2 at

; [R4 + 0] (R12 - 12 = RO)

4 AIM R3,1 ;Add 1 to Reg 3 and R4 so they
AIM R4,1 ; point to the next locations

; in memory (second 16 bits)

ITA R2 ; R2 <- Timer A

STBX R12,R3 ; Store contents of R2 at
"R3 + 0] (R12 - 12 = RO)

ITB R2 ; R2 <- Timer B

111

O-,

STBX R12,R4 ; Store contents of R2 at
; [R4 + RO] (R12 - 12 = RO)

POPM RO,R14 ;Restore Registers RO to R14
ENBL ; Allow Interrupts again
URS RI5 r return
END

Packaging the Procedures for Use

TIMEPACKAGE_1750A, finally, groups all of these

procedures in one place and defines an interface through the

entirely Ada procedure GETALLTIMES, which converts the

integral values of Timer A and B *ticks' to a floating point

value in seconds. Floating point was used instead of fixed

* point because the possibility of losing precision is greater

with fixed point numbers, even using deltas of 0.00001 and

0.0001. The comments in the source code explain how to use the

package.

TIME PACKAGE 1750A Source Code

-- TIMEPACKAGE_1750A

-- This package contains functions and procedures that will
return elapsed time to the caller.

0
-- INSTRUCTIONS FOR USING THIS PACKAGE:

1--) "With" the package (and 'use the package if you
-- don't want to make qualified calls).

-- 2) Declare at least two objects of type TIME_ 1750A
-- (defined in this package) as the parameters returned by the
-- procedure GETALL_TIMES, eg.

- -- timerareturn : TIME 1750A := 0.0;
-- timerb_-return TIME 1750A : 0.0;

-- 3) Make a call to RESET INTVECTORS_7_AND_9. This should
-- be the first executable statement in the program using this

112

01

-- package. RESETINTVECTORS_7_AND_9 allows
-- TIME PACKAGE 1750A to calculate the elaspsed time.
-- 4) Make calls to GETALL_TIMES, eg:
-- GETALLTIMES(timera_return,timerb_return);

-- Author: Capt Dan Joyce
-- Date: 06 Sep 1987
-- Version: 1.6

with SYSTEM:
package TIMEPACKAGE_1750A is

subtype time 1750A is LONG-FLOAT range 0.0 .. 1.0E30;

current totalaticks : longinteger 0;
current total bticks : long integer : 0;

-- These two memory locations are used by the interrupt

-- Service routines as storage for the interrupt count
* -- GetTimers will read the number of timer a/b interrupts

-- from these locations. The Address Clause keeps Ada from
-- using these locations for anything else.

--timera_ interrupt count : integer := 0;
timerb_ interrupt count : integer := 0;

for tmera_interrupt count use at 16*0500*;
for timerb_interruptcount use at 1640501#;

procedure RESET INTVECTORS_7_AND_9"
'." pragma interface(assemblyreset_ intvectors 7_and_9,

.resetiv')

procedure GETTIMERS(aticksreturn : out longinteger;
bticks return out longinteger)"

pragma interface(assembly,get-timers,'get_timers');

procedure GETALLTIMES(elapsedtimera out time_175OA;
* elapsed_timerb : out time_1750A);

end TIMEPACKAGE_1750A;

package body TIME_PACKAGE_1750A is

procedure GETALLTIMES (elapsed timera out time_ 1750A;
elapsed timerb out time_1750A) is

begin

GETTIMERS(current total aticks,
current totalbticks);

113

if current_ total _aticks < 0 then
current total _aticks :=0;

end if;

if current _total _bticlcs < 0 then
current total _bticks :=0;

N end if;

elapsed_ timera
TIME_ 1750A(current_ total _aticks) / 100_000.0;

elapsed_ timerb :
TIME_ 1750A(current_ total _bticks) / 10_000.0;

end GETALL_TIMES;

end TIMEPACKAGE_ 1750A;

114

Appendix G; Two-Sample t Test Calculations

This appendix contains the two-sample t test calculations

used to test the hypothesis that the mean interrupt delay time

for INTTESTI was less than that for INTTEST2, INTTEST3, or

INT_TEST4; and the hypothesis that the mean interrupt delay for

INTTEST5 was less than that for INTTEST6.

All hypothesis testing was done at the 0.01 level of

significance. The sample size for all tests was 100, thus the

critical value for the one-sided test was

t = 2.33 (Larsen and Marx, 1986:580).
0.01,198

The formula for the test statistic for the two sample t

test is:

t = (x - y) / [s (1/n + l/m)] (1)xy p

where

S = pooled variance,
n P

n = sample size of the X population,

m = sample size of the Y population.

The subscript on variables in this appendix refers to the

interrupt benchmark number, i.e. x 2 is the mean for INTTEST2

and sp12 is the pooled variance for INTTEST1 and INTTEST2.

The following pooled variances were calculated from the sample

variances reported in the benchmarks:

S p12 = 7.234 * 10 - 6 ap1 4 = 6.721 * I0- 6

0 p13 = 7.567 * 10 ap56 = 7.009 * 10

D.0

115

0N.N

The following sets of hypotheses were tested:

H 0 vs. H <

013 1 - 2&13 1 2

H 01 1 " vs. H al * (
Ho56 5->6 v. Ha56* A5 *6

Using formula 1 for the test statistic and the sample

means reported in Table IV in Chapter 5, the following test

statistics were calculated:

t 12 -35.776 t 14 -56.918

t 13 - 55.414 e56 = -19.168

In all cases, these values are less than -2.33, the critical t

value, therefore all H 0hypotheses are rejected.

11

II ' W

11111IO I W M

Bibliography

Ada Joint Program Office. Ada Compiler Validation Procedures
and Guidelines. Washington: AJPO, 1 January 1987.

Ada Information Clearinghouse. Validated Ada Compilers List.
Washington: AJPO, 1 September 1987.

Altman, Neal. 'Factors Causing Unexpected Variations in Ada
Benchmarks, Draft Report, May 1987, Software Engineering
Institute, Pittsburgh, PA. (Report number SEI-87-MR-12)

Bassman, Mitchell J. and others. An Approach for Evaluating
the Performance Efficiency of Ada Compilers, Ada
Letters, 5: 151-163 (Sept, Oct 1985).

Booch, Grady. Software Engineering with Ada, Second Ed. Menlo
Park California: The Benjamin/Cummings Publishing
Company, 1987.

4 Boeing Military Airplane Company (BMAC) , *Ada Compiler
Evaluation Capability Operational Software! Software
Requirements Specificatlon. Document Number S500-11703.
BMAC, Wichita KS, 5 August 1987.

Bennett, SSgt, James, Personal Interviews. ASD/ENASF, Wright-
Patterson AFB OH, June-July 1987.

Benwell, Nicholas, ed. Benchmarking: Computer Evaluation and
Measurement. Washington, D.C.: Hemisphere Publishing
Corporation, 1975.

Brashear, Philip, ACVC Maintenance Manager. Personal
Interviews. SofTech, Inc., Dayton OH, July 1987a.

..... ,ACVC Maintenance Manager. Perso,'nal Correspondence.
SofTech, Inc., Dayton OH, 30 September 1987b.

Bunce, Philip. Handouts distributed at "Ada/MIL-STD-1750A
Issues" Tutorial. Ada-JOVIAL User's Group Meeting, Dayton
OH, 13 July 1987.

Chitwood, Georgeanne, Ada Validation Facility Manager. Personal
Interview. ASD/SCOL, Wright-Patterson AFB OH, April 1987.

Clapp, Russell M. and others. *Toward Real-Time Performance
Benchmarks for Ada," Communications of the ACM, 29:
780-778 (Aug 1986).

Clements, Paul, Software Engineering Applications Section
Chief. Telephone Interviews. Naval Research Lab,
Washington, D.C., July 1987.

117

I%

..

Conn, Richard. The Ada Software Repository and the Defense
Data Network. New York: New York Zeotrope, 1987.

Craine. David B. Ada Compiler Evaluation Techniques for
Real-Time Avionics Applications. MS Thesis,
AFIT/GCS/MA/86D-6. School of Engineering, Air Force
Institute of Technology (AU) , Wright-Patterson AFB OH,

>1 December 1986.

Department of Defense. Military Standard: Sixteen-Bit Computer
Instruction Set Architecture. MIL-STD-1750A. Washington:
U.S. Government Printing Office, 21 May 1982.

Department of Defense. Military Standard: Ada Programming
Language. ANSI/MIL-STD-1815A. Washington: Department of
Defense, 22 January 1983.

Department of Defense. Military Standard: JOVIAL (J73)
MIL-STD-1589C. Washington: Department of Defense,
6 July 1984.

* Department of Defense. Use of Ada in Weapon Systems. DoD
Directive 3405.2. Washington: Government Printing
Office, 30 March 1987.

Goodenough, John B. The Ada Compiler Validation Capability
Implementers' Guide: Version 1. SofTech, Inc., Waltham,
MA, December 1986.

Johnson. Conrad, Senior Software Engineer. Telephone Interview.
Sonicraft, Inc., Chicago IL, 10 September 1987.

King, Capt, David, Software Group Lead. Personal Interview.
ASD/ENASF, Wright-Patterson AFB OH, March 1987.

Klemens, John D. Examination of the Effects of Using Ada
in Flight Control Software. MS Thesis,
AFIT/GCS/MA/87D-3. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,

*- December 1987.

Larsen, Richard J. and Morris L. Marx. An Introduction toMathematical Statistics and Its Applications. Englewood

Cliffs. NJ: Prentice-Hall, 1986.

Lyons, Maj, Robert. 'Ada Insertion into ATA, ATF, and LHX - A
w, Tri-Service Perspective", presentation to Ada-JOVIAL

User's Group, Dayton OH, 14 July 1987.

Myers, Ware. 'Ada: First Users - Pleased; Prospective Users -

Still Hesitant, Computer, 20:71 (March 1987).

118

.

@1%
SA:

Performance Issues Working Group (PIWG). Ada Slices: Official
Newsletter of ACM SIGAda PIWG. December 1986.

Phillips, Stephen P. and Peter R. Stevenson. "The Role of Ada
In Real Time Embedded Applications, Ada Letters,
6: 54-60 (Nov, Dec 1986).

-Pitarys, ILt, Marc, Avionics Systems Engineer. Personal
Interviews. AFWAL/AAAF-3, Wright-Patterson AFB, OH,
July, 1987.

Ploedereder, Erhard. "Ada Compiler Validation, Application of
Ada Higher Order Language to Guidance and Control, Paper
7, 1-8. NATO Advisory Group for Aerospace Research and
Development. June, 1986 (AD-A171299).

Roark, Chuck and Ron McAfee. 'The Applicability of Ada to
MIL-STD-1750A, Unpublished article, Texas Instruments,
Plano, TX, July 1987.

Roark, Chuck, Senior Member Technical Staff. Personal
Interview. Texas Instruments, Dayton OH, 15 July 1987.

Seward, Dave, Principal Engineer. Telephone Interview.
Advanced Computer Techniques, New York, New York, 15 July
1987.

Squire, Jon, Chairman, ACM SIGAda PIWG, Telephone Interviews.
Westinghouse Defense and Electronics Center, Baltimore MD,
April, June 1987.

Wilson, Steven, Ada Task Leader. Personal Interview.
ASD/SCOL, Wright-Patterson AFB OH, April 1987a.

------ UsinX the ACVC Tests (Version 1.9). Unpublished
Document. ASD/SCOL, Wright-Patterson AFB OH, April 1987b.

4Witt, Donald J. Using Ada in the Real-Time Avionics
Environment: Issues and Conclusions. MS Thesis,

*AFIT/GCS/MA/85D-6. School of Engineering, Air Force
Institute of Technology (AU) , Wright-Patterson AFB OH,
December 1985.

119

VITA

Captain Daniel 0. Joyce was born on 21 October 1959 in

Riverside, California. He graduated from Foxcroft Academy in

Dover-Foxcroft, Maine in 1977 and attended the University of

New Hampshire, from which he received the degree of Bachelor of

Science in Mathematics in May 1981. Upon graduation, he

2 received a commission in the USAF through the ROTC program. He

completed technical training at Keesler AFB, Mississippi in

'a January 1982 and was assigned as an Attrition Modeling Systems

Analyst to 1851st Information Systems Support Squadron, Offutt
I

AFB, Nebraska. He entered the School of Engineering, Air Force

Institute of Technology, in June of 1986.

[

Permanent address- c/o John A. Glover

Box 265

Monson, Maine 04464

120

I

L'NLASIF1ED
SECURITY CLASSIFCATION OF THIS PAGE

IForm ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

la REPORT SECUjR 'I CLASSOCAT!ON lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITV 3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICAT;ON, DOWNGRADING SCHEDULE distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6& NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

s(2iuo_, f Fn-_ineri1 (if applicable)
Schol o En~ineri~ jAFIT/ENG

6c. ADDRESS (City, State, and ZIP Code) Ilb ADDRESS (City, State, and ZIP Code)
Air Forceo iiistituto of Tochniolojy (AU)
;Wri h->~trsoiAB ho i-36

8a NAME OF FUNDING!SPONSORING 18b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

9QRGAN IZATf9N (if applicable)
y'st'rs L-n-Aioorriu, ADEN

Avio'nic.s FscilitvF
Bc- ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

-\DEAFPROGRAM PROJECT TASK WORK UNIT
* \12-~~~nAF'L, Oiou -5f33 ELEMENT NO NO NO ACCESSION NO

11 TITLE (include Security Classification) VALIDATING AND EVALUATING ADA' S REPRESENTATION CLAUSES AND
>LEME>J1ATT I*O-DEPENTIEXN FEATURES ON MI L-STD- 17 SQA ARCHITECTURE

12 PERSONAL AUTHOR(S)
Daniol 0. Joyce, Capt, USAF

13. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

MS Thesis IFROM To 1987 December 132
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

E FIELD ROUP SUB-GROUP -Ada Compilers Bechmark Validation-
120_ Embedded computer

2 08

'9 ABSTRACT (Continue on reverse if necessary and identif'y by block number)

.iisAvisor: iPichlzird P. Crojss, 1,L Col, USAF
Assistant Deati, S(--cool of Enjinoerinc

.P.

Aro.d~Lr' eAW A:-n 190.V.

20 DISTRIBUTION 'AVAILABILITY OF ABSIRA(7 21 ABSTRACT SECURITY CLASSIFICATION
OJUNCLASSIFIED/jNLIMI-ED) [X SAME AS RPFT E) SR Unclassified

22a NAME OF RESPONSIBLE ?ND1,0DOuAL 22b TELEPHONE (Include Area Coe 2c OFFICE SYMBOL

Richard 1-. (;rubs, TUt Col, USAF (513) 255-4372 AFIT/EN

DODForm 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

q r% I)-*

Abstract

Developers of applications for embedded systems need full implementations
for all of the representation clauses and implementation-dependent features
in Chapter 13 of the''anguage Reference Manual(LRM) if they are to be
successful in developing these application entirely in Ada. Because
implementations of Ada's representation clauses and implementation-dependent
features vary from compiler to compiler, these features must be validated
and evaluated before they are used in applications that have such high
reliability requirements. This thesis describes an approach used to develop
validation tests and performance evaluation tests, or benchmarks, for Ada's
address clauses and interruptg features and reports the results of the
validation tests and benchmarks.

The validation tests were compiled with three validated Ada compilers,
two of which were targeted to the MIL-STD-1750A processor. The benchmarks
developed in this research measure interrupt delay time for interrupts associated
with a task entry by an address clause. These benchmarks were compiled with
a validated Ada compiler targeted to the MIL-STD-1750A and run on a Sperry
i63l MIL-STD-1750A processor.

4

II

4,1A

/1k

rp 21L -, ,,I . 1

